Linear Regression Demystified

Linear regression is an important subject in statistics. In elementary statistics courses, formulae related to linear regression are often stated without derivation. This note intends to derive these formulae for students with more advanced math background.

1 Simple Regression: One Variable

1.1 Least Square Prescription

Suppose we have a set of data points $\left(x_{i}, y_{i}\right)(i=1,2, \cdots, n)$. The goal of linear regression is to find a straight line that best fit the data. In other words, we want to build a model

$$
\begin{equation*}
\hat{y}_{i}=\beta_{0}+\beta_{1} x_{i} \tag{1}
\end{equation*}
$$

and tune the parameters β_{0} and β_{1} so that \hat{y}_{i} is as close to y_{i} as possible for all $i=1,2, \cdots, n$.
Before we do the math, we need to clarify the problem. How do we judge the "closeness" of \hat{y}_{i} and y_{i} for all i ? If the data points $\left(x_{i}, y_{i}\right)$ do not fall exactly on a straight line, y_{i} and \hat{y}_{i} is not going to be the same for all i. The deviation of y_{i} from \hat{y}_{i} is called the residual and is denoted by ϵ_{i} here. In other words,

$$
\begin{equation*}
y_{i}=\hat{y}_{i}+\epsilon_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i} . \tag{2}
\end{equation*}
$$

The least square prescription is to find β_{0} and β_{1} that minimize the sum of the square of the residuals $S S E$:

$$
\begin{equation*}
S S E=\sum_{i=1}^{n} \epsilon_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2} . \tag{3}
\end{equation*}
$$

If you are familiar with calculus, you will know that the minimization can be done by setting the derivatives of $S S E$ with respect to β_{0} and β_{1} to 0 , i.e. $\partial S S E / \partial \beta_{0}=0$ and $\partial S S E / \partial \beta_{1}=0$. The resulting equations are ${ }^{1}$

$$
\begin{equation*}
\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)=\sum_{i=1}^{n} \epsilon_{i}=0 \quad \text { and } \quad \sum_{i=1}^{n} x_{i}\left(y_{i}-\hat{y}_{i}\right)=\sum_{i=1}^{n} x_{i} \epsilon_{i}=0 . \tag{4}
\end{equation*}
$$

We can combine the first and second equation to derive an alternative equation for the second equation:

$$
\sum_{i=1}^{n} \epsilon_{i}=0 \Rightarrow \sum_{i=1}^{n} \bar{x} \epsilon_{i}=0
$$

Subtracting this equation from the second equation of (4) yields

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \epsilon_{i}=0
$$

Equation (4) can be expressed as

$$
\begin{equation*}
\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)=\sum_{i=1}^{n} \epsilon_{i}=0 \quad \text { and } \quad \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\hat{y}_{i}\right)=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \epsilon_{i}=0 . \tag{5}
\end{equation*}
$$

If you are not familiar with calculus, we can show you a proof using algebra. I actually prefer his proof since it is more rigorous. Before presenting the proof, let's remind you some concepts in statistics.

[^0]
1.2 Mean, Standard Deviation and Correlation

The mean and standard deviation of a set of points $\left\{u_{i}\right\}$ are defined as

$$
\begin{equation*}
\bar{u}=\frac{1}{n} \sum_{i=1}^{n} u_{i} \quad, \quad S D_{u}=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(u_{i}-\bar{u}\right)^{2}} . \tag{6}
\end{equation*}
$$

The Z score of u_{i} is defined as

$$
\begin{equation*}
Z_{u i}=\frac{u_{i}-\bar{u}}{S D_{u}} \tag{7}
\end{equation*}
$$

The correlation of two set of points (with equal number of elements) $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ is defined as

$$
\begin{equation*}
r_{x y}=r_{y x}=\frac{1}{n} \sum_{i=1}^{n} Z_{x i} Z_{y i}=\frac{1}{n} \sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{S D_{x} S D_{y}} \tag{8}
\end{equation*}
$$

The Cauchy-Schwarz inequality states that for two set of real numbers $\left\{u_{i}\right\}$ and $\left\{v_{i}\right\}$,

$$
\left(\sum_{i=1}^{n} u_{i} v_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} u_{i}^{2}\right)\left(\sum_{i=1}^{n} v_{i}^{2}\right)
$$

and the equality holds if and only if $v_{i}=k u_{i}$ for all i, where k is a constant. You can find the proof of the inequality in, e.g., Wikipedia.

It follows from the Cauchy-Schwarz inequality that the correlation $\left|r_{x y}\right| \leq 1$, with $\left|r_{x y}\right|=1$ if and only if x_{i} and y_{i} fall exactly on a straight line, i.e. $\epsilon_{i}=0$ for all i. So the correlation $r_{x y}$ measures how tightly the points $\left(x_{i}, y_{i}\right)$ are clustered around a line.

1.3 Regression Equation

To derive the regression equation, we first rewrite $S S E$ in equation (3) in terms of Z-scores. It follows from the definition of Z-scores that

$$
x_{i}=\bar{x}+S D_{x} Z_{x i} \quad, \quad y_{i}=\bar{y}+S D_{y} Z_{y i}
$$

and the $S S E$ becomes

$$
\begin{aligned}
S S E & =\sum_{i=1}^{n}\left[\bar{y}+S D_{y} Z_{y i}-\beta_{0}-\beta_{1}\left(\bar{x}+S D_{x} Z_{x i}\right)\right]^{2} \\
& =\sum_{i=1}^{n}\left(S D_{y} Z_{y i}-\beta_{1} S D_{x} Z_{x i}+\bar{y}-\beta_{0}-\beta_{1} \bar{x}\right)^{2}
\end{aligned}
$$

For simplicity, we denote $\tilde{\beta}_{0}=\bar{y}-\beta_{0}-\beta_{1} \bar{x}$. Then we have

$$
\begin{align*}
S S E= & \sum_{i=1}^{n}\left(S D_{y} Z_{y i}-\beta_{1} S D_{x} Z_{x i}+\tilde{\beta}_{0}\right)^{2} \\
= & S D_{y}^{2} \sum_{i=1}^{n} Z_{y i}^{2}+\beta_{1}^{2} S D_{x}^{2} \sum_{i=1}^{n} Z_{x i}^{2}+\sum_{i=1}^{n} \tilde{\beta}_{0}^{2}-2 \beta_{1} S D_{x} S D_{y} \sum_{i=1}^{n} Z_{x i} Z_{y i} \\
& +2 \tilde{\beta}_{0} S D_{y} \sum_{i=1}^{n} Z_{y i}-2 \tilde{\beta}_{0} \beta_{1} S D_{x} \sum_{i=1}^{n} Z_{x i} \tag{9}
\end{align*}
$$

Recall that the Z-scores are constructed to have zero mean and unit standard deviation. It follows that

$$
\sum_{i=1}^{n} Z_{x i}=\sum_{i} Z_{y i}=0 \quad, \quad \frac{1}{n} \sum_{i=1}^{n} Z_{x i}^{2}=\frac{1}{n} \sum_{i=1}^{n} Z_{y i}^{2}=1
$$

and from the definition of correlation we have

$$
\frac{1}{n} \sum_{i=1}^{n} Z_{x i} Z_{y i}=r_{x y}
$$

Thus the SSE in equation (9) can be written as

$$
\begin{align*}
S S E & =n\left(S D_{y}^{2}+\beta_{1}^{2} S D_{x}^{2}+\tilde{\beta}_{0}^{2}-2 \beta_{1} r_{x y} S D_{x} S D_{y}\right) \\
& =n\left[\tilde{\beta}_{0}^{2}+\left(S D_{x} \beta_{1}-r_{x y} S D_{y}\right)^{2}+\left(1-r_{x y}^{2}\right) S D_{y}^{2}\right] \\
& =n\left[\left(\bar{y}-\beta_{0}-\beta_{1} \bar{x}\right)^{2}+\left(S D_{x} \beta_{1}-r_{x y} S D_{y}\right)^{2}\right]+n\left(1-r_{x y}^{2}\right) S D_{y}^{2} \tag{10}
\end{align*}
$$

Note that we have re-expressed $\tilde{\beta}_{0}$ in terms of β_{0} and β_{1} in the last step. Remember your goal is to find β_{0} and β_{1} to minimize $S S E$. The quantity inside the square bracket in equation (10) is a sum of two squares and contain the variables β_{0} and β_{1}, whereas $n\left(1-r_{x y}^{2}\right) S D_{y}^{2}$ is a fixed quantity. Therefore, we conclude that

$$
S S E \geq n\left(1-r_{x y}^{2}\right) S D_{y}^{2}
$$

and the equality holds if and only if

$$
\bar{y}-\beta_{0}-\beta_{1} \bar{x}=0 \quad \text { and } \quad S D_{x} \beta_{1}-r_{x y} S D_{y}=0 .
$$

Therefore, the values of β_{0} and β_{1} that minimize $S S E$ is

$$
\begin{equation*}
\beta_{1}=r_{x y} \frac{S D_{y}}{S D_{x}}, \quad \beta_{0}=\bar{y}-\beta_{1} \bar{x} \tag{11}
\end{equation*}
$$

and the minimum $S S E$ is

$$
\begin{equation*}
S S E=n\left(1-r_{x y}^{2}\right) S D_{y}^{2} \tag{12}
\end{equation*}
$$

How does equations (11) related to equations (5) derived from calculus? We are going to prove that they are the same thing. Using equations (11) we have

$$
\begin{aligned}
\sum_{i=1}^{n} \epsilon_{i} & =\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right) \\
& =\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right) \\
& =\sum_{i=1}^{n}\left(y_{i}-\bar{y}+\beta_{1} \bar{x}-\beta_{1} x_{i}\right) \\
& =\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)-\beta_{1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \\
& =0
\end{aligned}
$$

If the last step is not obvious to you, here's a simple proof:

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \Rightarrow \sum_{i=1}^{n} x_{i}=n \bar{x}=\sum_{i=1}^{n} \bar{x} \Rightarrow \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0
$$

and similarly

$$
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)=0
$$

Now let's look at the second equation of (5):

$$
\begin{aligned}
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & =\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}+\beta_{1} \bar{x}-\beta_{1} x_{i}\right) \\
& =\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)-\beta_{1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
\end{aligned}
$$

From the definition of correlation and standard deviation, we have

$$
\begin{gathered}
r_{x y}=\frac{1}{n} \sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{S D_{x} S D_{y}} \Rightarrow \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=n r_{x y} S D_{x} S D_{y} \\
S D_{x}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \Rightarrow \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=n S D_{x}^{2}
\end{gathered}
$$

Thus,

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=n r_{x y} S D_{x} S D_{y}-\beta_{1} n S D_{x}^{2}=n S D_{x}^{2}\left(r_{x y} \frac{S D_{y}}{S D_{x}}-\beta_{1}\right)=0
$$

Therefore, we have proved that equations (5) follows from equations (11). On the other hand, equations (5) are two linear equations for β_{0} and β_{1}. We can solve for β_{0} and β_{1} from these equations, which we will do so in Section 1.7. The result is that β_{0} and β_{1} are given by equations (11) and so the two sets of equations are equivalent.

1.4 Interpretation

We will try to give you an intuition of the meaning of equations (5) below.
We can rewrite the first equation of (5) as

$$
\begin{equation*}
\bar{\epsilon}=0 . \tag{13}
\end{equation*}
$$

That is to say that the mean of ϵ_{i} vanishes. The second equation of (5) means that

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \epsilon_{i}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(\epsilon_{i}-\bar{\epsilon}\right)=0 \Rightarrow n S D_{x} S D_{\epsilon} r_{x \epsilon}=0 \Rightarrow r_{x \epsilon}=0
$$

That is to say that x_{i} and ϵ_{i} are uncorrelated.
Thus the least square prescription is to find β_{0} and β_{1} to make the residuals having zero mean and being uncorrelated with x_{i}. Let's illustrate how this can be done graphically.

Suppose we have the following data set of x_{i} and y_{i} :

We want to fit a straight line $y=\beta_{0}+\beta_{1} x$ to the data points. We know the line has to make the resuduals having zero mean and being uncorrelated with x_{i}. First, let's imagine choosing various values of β_{1} and see what the plot $y-\beta_{1} x$ versus x look like. In general, we will have the plot similar to the one above but with different overall slope. If we pick the right value of β_{1}, we will see that the residual $y-\beta_{1} x$ vs x is flat:

We know have achieved the first goal: by choosing the right value of β_{1}, the residual $y-\beta_{1} x$ is uncorrelated with x. However, the residuals do not have zero mean. So next we want to choose β_{0} so that $y-\beta_{0}-\beta_{1} x$ has zero
mean. When the right value of β_{0} is chosen, the residuals become this:

We have accomplished our goal. The residuals now have zero mean and are uncorrelated with x_{i}. The resulting regression line $y=\beta_{0}+\beta_{1} x$ is the straight line that is best fit to the data points. The graph below shows the regression line (blue), data points (black) and the residuals (red).

We have outlined the idea of linear regression. Next we introduce the the concept of a vector, which proves to be very useful for regression with more than one variables.

1.5 Vectors

An n-dimensional vector \boldsymbol{V} contains n real numbers $v_{1}, v_{2}, \cdots, v_{n}$, often written in the form

$$
\boldsymbol{V}=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right)
$$

The numbers $v_{1}, v_{2}, \cdots, v_{n}$ are called the components of \boldsymbol{V}. Here we adopt the convention to write vector variables in boldface to distinguish them from numbers. It is useful to define a special vector $\boldsymbol{X}_{\mathbf{0}}$ whose components are all equal to 1 . That is,

$$
\boldsymbol{X}_{\mathbf{0}}=\left(\begin{array}{c}
1 \tag{14}\\
1 \\
\vdots \\
1
\end{array}\right)
$$

The scalar product of two vectors \boldsymbol{U} and \boldsymbol{V} is defined as

$$
\boldsymbol{U} \cdot \boldsymbol{V}=\boldsymbol{V} \cdot \boldsymbol{U}=\sum_{i=1}^{n} u_{i} v_{i}
$$

where v_{i} and u_{i} are components of \boldsymbol{V} and \boldsymbol{U}. Note that the result of the scalar product of two vectors is a number, not a vector. Two vectors \boldsymbol{U} and \boldsymbol{V} are said to be orthogonal if and only if $\boldsymbol{U} \cdot \boldsymbol{V}=0$.

It follows from the definition that

$$
\boldsymbol{V} \cdot \boldsymbol{V}=\sum_{i=1}^{n} v_{i}^{2} \geq 0
$$

with $\boldsymbol{V} \cdot \boldsymbol{V}=0$ if and only if all components of \boldsymbol{V} are 0 . It follows from the Cauchy-Schwarz inequality that

$$
(\boldsymbol{U} \cdot \boldsymbol{V})^{2} \leq(\boldsymbol{U} \cdot \boldsymbol{U})(\boldsymbol{V} \cdot \boldsymbol{V})
$$

with the equality holds if and only if $\boldsymbol{U}=k \boldsymbol{V}$ for some constant k.
Now that we have introduced the basic concept of a vector, we are now ready to express the regression equations in vector form.

1.6 Regression Equations in Vector Form

Equation (2) can be written as

$$
\begin{equation*}
\boldsymbol{Y}=\hat{\boldsymbol{Y}}+\boldsymbol{\epsilon}=\beta_{0} \boldsymbol{X}_{\mathbf{0}}+\beta_{1} \boldsymbol{X}+\boldsymbol{\epsilon} \tag{15}
\end{equation*}
$$

The sum of square of residuals $S S E$ in (3) can be written as

$$
\begin{equation*}
S S E=\boldsymbol{\epsilon} \cdot \boldsymbol{\epsilon}=(\boldsymbol{Y}-\hat{\boldsymbol{Y}}) \cdot(\boldsymbol{Y}-\hat{\boldsymbol{Y}})=\left(\boldsymbol{Y}-\beta_{0} \boldsymbol{X}_{\mathbf{0}}-\beta_{1} \boldsymbol{X}\right) \cdot\left(\boldsymbol{Y}-\beta_{0} \boldsymbol{X}_{\mathbf{0}}-\beta_{1} \boldsymbol{X}\right) \tag{16}
\end{equation*}
$$

To minimize $S S E$, we set the derivatives of $S S E$ with respect to β_{0} and β_{1} to 0 . The resulting equations are

$$
\boldsymbol{X}_{\mathbf{0}} \cdot\left(\boldsymbol{Y}-\beta_{0} \boldsymbol{X}_{\mathbf{0}}-\beta_{1} \boldsymbol{X}\right)=0 \quad, \quad \boldsymbol{X} \cdot\left(\boldsymbol{Y}-\beta_{0} \boldsymbol{X}_{\mathbf{0}}-\beta_{1} \boldsymbol{X}\right)=0
$$

or

$$
\begin{equation*}
\boldsymbol{X}_{\mathbf{0}} \cdot \boldsymbol{\epsilon}=\boldsymbol{X} \cdot \boldsymbol{\epsilon}=0 \tag{17}
\end{equation*}
$$

This is equation (4) written in vector form. We see that the least square prescription can be interpreted as finding β_{0} and β_{1} to make the residual vector $\boldsymbol{\epsilon}$ orthogonal to both $\boldsymbol{X}_{\mathbf{0}}$ and \boldsymbol{X}.

The mean and standard deviation in (6) can be expressed as

$$
\begin{equation*}
\bar{u}=\frac{1}{n} \boldsymbol{X}_{\mathbf{0}} \cdot \boldsymbol{U}, S D_{u}=\sqrt{\frac{1}{n}\left(\boldsymbol{U}-\bar{u} \boldsymbol{X}_{\mathbf{0}}\right) \cdot\left(\boldsymbol{U}-\bar{u} \boldsymbol{X}_{\mathbf{0}}\right)} \tag{18}
\end{equation*}
$$

and the Z score in (7) becomes

$$
\begin{equation*}
\boldsymbol{Z}_{u}=\frac{\boldsymbol{U}-\bar{u} \boldsymbol{X}_{\mathbf{0}}}{S D_{u}} \tag{19}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\boldsymbol{Z}_{\boldsymbol{u}} \cdot \boldsymbol{Z}_{\boldsymbol{u}}=n \tag{20}
\end{equation*}
$$

The correlation $r_{x y}$ in (8) is proportional to the scalar product of $\boldsymbol{Z}_{\boldsymbol{x}}$ and $\boldsymbol{Z}_{\boldsymbol{y}}$:

$$
\begin{equation*}
r_{x y}=\frac{1}{n} \boldsymbol{Z}_{\boldsymbol{x}} \cdot \boldsymbol{Z}_{y} \tag{21}
\end{equation*}
$$

The equation $r_{x \epsilon}=0$ is equivalent to

$$
\begin{equation*}
Z_{x} \cdot \epsilon=0 \tag{22}
\end{equation*}
$$

We see that the equations in vector form are simpler and more elegant. We are now ready to solve the regression equations (15) and (17) for β_{0} and β_{1}.

1.7 Regression Coefficients

In this section, we are going to use the vector algebra to solve for β_{0} and β_{1} to re-derive equations (11). This is a useful exercise because it can be easily generalized to multiple regression we consider later.

Start with equation (15). Taking the scalar product of (15) with $\boldsymbol{X}_{\mathbf{0}}$, using equations (18), (17) and $\boldsymbol{X}_{\mathbf{0}} \cdot \boldsymbol{X}_{\mathbf{0}}=n$, we obtain

$$
\begin{equation*}
n \bar{y}=n \beta_{0}+n \beta_{1} \bar{x} \quad \Rightarrow \quad \bar{y}=\beta_{0}+\beta_{1} \bar{x}, \tag{23}
\end{equation*}
$$

Multiplying both sides of the above equation by $\boldsymbol{X}_{\mathbf{0}}$ gives

$$
\bar{y} \boldsymbol{X}_{\mathbf{0}}=\beta_{0} \boldsymbol{X}_{\mathbf{0}}+\beta_{1} \bar{x} \boldsymbol{X}_{\mathbf{0}}
$$

Subtracting the above equation from (15) gives

$$
\boldsymbol{Y}-\bar{y} \boldsymbol{X}_{\mathbf{0}}=\beta_{1}\left(\boldsymbol{X}-\bar{x} \boldsymbol{X}_{\mathbf{0}}\right)+\boldsymbol{\epsilon}
$$

It follows from equation (19) that $\boldsymbol{Y}-\bar{y} \boldsymbol{X}_{\mathbf{0}}=S D_{y} \boldsymbol{Z}_{\boldsymbol{y}}$ and $\boldsymbol{X}-\bar{x} \boldsymbol{X}_{\mathbf{0}}=S D_{x} \boldsymbol{Z}_{\boldsymbol{x}}$. Hence we have

$$
S D_{y} \boldsymbol{Z}_{\boldsymbol{y}}=\beta_{1} S D_{x} \boldsymbol{Z}_{\boldsymbol{x}}+\boldsymbol{\epsilon}
$$

Taking the scalar product with $\boldsymbol{Z}_{\boldsymbol{x}}$ and using $\boldsymbol{Z}_{\boldsymbol{x}} \cdot \boldsymbol{\epsilon}=0$, we obtain

$$
S D_{y} \boldsymbol{Z}_{\boldsymbol{x}} \cdot \boldsymbol{Z}_{\boldsymbol{y}}=\beta_{1} S D_{x} \boldsymbol{Z}_{\boldsymbol{x}} \cdot \boldsymbol{Z}_{\boldsymbol{x}}
$$

It follows from equation (21) and (20) that $\boldsymbol{Z}_{\boldsymbol{x}} \cdot \boldsymbol{Z}_{\boldsymbol{y}}=n r_{x \boldsymbol{y}}$ and $\boldsymbol{Z}_{\boldsymbol{x}} \cdot \boldsymbol{Z}_{\boldsymbol{x}}=n$ and so the above equation reduces to

$$
S D_{y} r_{x y}=\beta_{1} S D_{x} \quad \Rightarrow \quad \beta_{1}=r_{x y} \frac{S D_{y}}{S D_{x}} .
$$

Combining the above equation with (23), we finally solve β_{0} and β_{1} :

$$
\begin{equation*}
\beta_{1}=r_{x y} \frac{S D_{y}}{S D_{x}} \quad, \quad \beta_{0}=\bar{y}-\beta_{1} \bar{x} \tag{24}
\end{equation*}
$$

The regression line is the straight line with slope $r_{x y} S D_{y} / S D_{x}$ passing through the point (\bar{x}, \bar{y}).

1.8 Root Mean Square Error

Having found a straight line that best fit the data points, we next want to know how good the fit is. One way to characterize the "goodness" of the fit is to calculate the mean square error RMSE, defined as

$$
\begin{equation*}
R M S E=\sqrt{\frac{S S E}{n}}=\sqrt{\frac{\epsilon \cdot \epsilon}{n}} \tag{25}
\end{equation*}
$$

It follows from equation (12) that $R M S E=\sqrt{1-r_{x y}^{2}} S D_{y}$. Here we derive it again using the vector algebra since it can be easily generalized to multiple regression.

We introduce two quantities $S S T$ and $S S M$. The total sum square $S S T$ is defined as

$$
\begin{equation*}
S S T=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\left(\boldsymbol{Y}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right) \cdot\left(\boldsymbol{Y}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right) \tag{26}
\end{equation*}
$$

It follows from the definition of standard deviation [see equation (6) or (18)] that

$$
\begin{equation*}
S S T=n S D_{y}^{2} \tag{27}
\end{equation*}
$$

The sum square predicted by the linear model $S S M$ is defined as

$$
\begin{equation*}
S S M=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}=\left(\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right) \cdot\left(\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right) \tag{28}
\end{equation*}
$$

Using $\hat{\boldsymbol{Y}}=\beta_{0} \boldsymbol{X}_{\mathbf{0}}+\beta_{1} \boldsymbol{X}$ and $\beta_{0}=\bar{y}-\beta_{1} \bar{x}$, we have

$$
\begin{equation*}
\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}=\left(\bar{y}-\beta_{1} \bar{x}\right) \boldsymbol{X}_{\mathbf{0}}+\beta_{1} \boldsymbol{X}-\bar{y} \boldsymbol{X}_{\mathbf{0}}=\beta_{1}\left(\boldsymbol{X}-\bar{x} \boldsymbol{X}_{\mathbf{0}}\right)=\beta_{1} S D_{x} \boldsymbol{Z}_{\boldsymbol{x}} \tag{29}
\end{equation*}
$$

where we have used equation (19) to obtain the last equality. Combining (28), (29), (20) (24) and (27), we obtain

$$
\begin{equation*}
S S M=n \beta_{1}^{2} S D_{x}^{2}=n\left(r_{x y} \frac{S D_{y}}{S D_{x}}\right)^{2} S D_{x}^{2}=n r_{x y}^{2} S D_{y}^{2}=r_{x y}^{2} S S T \tag{30}
\end{equation*}
$$

Next we want to prove an identity that $S S T=S S M+S S E$. To see that, we start with the identity

$$
\boldsymbol{Y}-\bar{y} \boldsymbol{X}_{\mathbf{0}}=(\boldsymbol{Y}-\hat{\boldsymbol{Y}})+\left(\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right)=\boldsymbol{\epsilon}+\left(\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right)
$$

We then "square" both sides by taking the scalar product with itself:

$$
\left(\boldsymbol{Y}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right) \cdot\left(\boldsymbol{Y}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right)=\left[\boldsymbol{\epsilon}+\left(\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right)\right] \cdot\left[\boldsymbol{\epsilon}+\left(\hat{\boldsymbol{\boldsymbol { }}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right)\right]
$$

The left hand side is $S S T$, the right hand side is the sum of $S S E, S S M$ and a cross term:

$$
\begin{aligned}
S S T & =\boldsymbol{\epsilon} \cdot \boldsymbol{\epsilon}+\left(\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right) \cdot\left(\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right)+2 \boldsymbol{\epsilon} \cdot\left(\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right) \\
& =S S E+S S M+2 \boldsymbol{\epsilon} \cdot\left(\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right)
\end{aligned}
$$

It follows from (29) and $\boldsymbol{Z}_{\boldsymbol{x}} \cdot \boldsymbol{\epsilon}=0$ that the cross term vanishes:

$$
\boldsymbol{\epsilon} \cdot\left(\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right)=\beta_{1} S D_{x} \boldsymbol{Z}_{\boldsymbol{x}} \cdot \boldsymbol{\epsilon}=0
$$

Another way of seeing this is to note that $\boldsymbol{\epsilon}$ is orthogonal to both $\boldsymbol{X}_{\mathbf{0}}$ and \boldsymbol{X}, as required by the least square prescription (17). So ϵ is orthogonal to any linear combination of $\boldsymbol{X}_{\mathbf{0}}$ and \boldsymbol{X}. Since $\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}$ is a linear combination of $\boldsymbol{X}_{\mathbf{0}}$ and $\boldsymbol{X}_{\mathbf{1}}$, it is orthogonal to $\boldsymbol{\epsilon}$.

We have just proved that

$$
\begin{equation*}
S S T=S S M+S S E \tag{31}
\end{equation*}
$$

We have calculated above that $S S M=r_{x y}^{2}$ and $S S T=n S D_{y}^{2}$. Using the identity $S S T=S S M+S S E$, we obtain

$$
S S E=S S T-S S M=\left(1-r_{x y}^{2}\right) S S T=n\left(1-r_{x y}^{2}\right) S D_{y}^{2}
$$

Combining this equation with the definition of $R M S E$ in (25), we find

$$
\begin{equation*}
R M S E=\sqrt{1-r_{x y}^{2}} S D_{y} \tag{32}
\end{equation*}
$$

2 Multiple Regression

Now we want to generalize the results of simple regression to multiple regression. We will first consider the case with two variables in Section 2.1, because simple analytic expressions exist in this case and the derivation is relatively straightforward. Then we will turn to the more general case with more than two variables in Section 2.2. Finally, we will derive a general result for the RMSE calculation in Section 2.4.

2.1 Two Variables

Suppose we want to fit the data points $\left\{y_{i}\right\}$ with two variables $\left\{x_{1 i}\right\}$ and $\left\{x_{2 i}\right\}$ by a linear model

$$
y_{i}=\hat{y}_{i}+\epsilon_{i}, \quad i=1,2, \cdots, n
$$

with

$$
\hat{y}_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i} .
$$

The least square prescription is again to find β_{0}, β_{1} and β_{2} to minimize the sum square of the residuals:

$$
S S E=\sum_{i=1}^{n} \epsilon_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

As in the case of simple regression, it is more convenient to rewrite the above equations in vector form as follows:

$$
\begin{gather*}
\boldsymbol{Y}=\hat{\boldsymbol{Y}}+\boldsymbol{\epsilon}=\beta_{0} \boldsymbol{X}_{\mathbf{0}}+\beta_{1} \boldsymbol{X}_{\mathbf{1}}+\beta_{2} \boldsymbol{X}_{\mathbf{2}}+\boldsymbol{\epsilon} \tag{33}\\
\hat{\boldsymbol{Y}}=\beta_{0} \boldsymbol{X}_{\mathbf{0}}+\beta_{1} \boldsymbol{X}_{\mathbf{1}}+\beta_{2} \boldsymbol{X}_{\mathbf{2}} \tag{34}\\
S S E=\boldsymbol{\epsilon} \cdot \boldsymbol{\epsilon}=\left(\boldsymbol{Y}-\beta_{0} \boldsymbol{X}_{\mathbf{0}}-\beta_{1} \boldsymbol{X}_{\mathbf{1}}-\beta_{2} \boldsymbol{X}_{\mathbf{2}}\right) \cdot\left(\boldsymbol{Y}-\beta_{0} \boldsymbol{X}_{\mathbf{0}}-\beta_{1} \boldsymbol{X}_{\mathbf{1}}-\beta_{2} \boldsymbol{X}_{\mathbf{2}}\right) \tag{35}
\end{gather*}
$$

To employ the least square prescription, we set the derivatives of $S S E$ with respect to β_{0}, β_{1} and β_{2} to 0 . The resulting equations are

$$
\begin{equation*}
\boldsymbol{X}_{0} \cdot \boldsymbol{\epsilon}=\boldsymbol{X}_{1} \cdot \boldsymbol{\epsilon}=\boldsymbol{X}_{\mathbf{2}} \cdot \boldsymbol{\epsilon}=0 \tag{36}
\end{equation*}
$$

That is to say that $\boldsymbol{\epsilon}$ is orthogonal to $\boldsymbol{X}_{\mathbf{0}}, \boldsymbol{X}_{\mathbf{1}}$ and $\boldsymbol{X}_{\mathbf{2}}$. In other words, $\hat{\boldsymbol{Y}}$ is the vector \boldsymbol{Y} projected onto the vector space spanned by $\boldsymbol{X}_{\mathbf{0}}, \boldsymbol{X}_{\mathbf{1}}$ and $\boldsymbol{X}_{\mathbf{2}}$.

For convenience, we denote \boldsymbol{Z}_{1} and $\boldsymbol{Z}_{\mathbf{2}}$ as the Z-score vectors associated with $\boldsymbol{X}_{\mathbf{1}}$ and $\boldsymbol{X}_{\mathbf{2}}$, respectively. That is,

$$
\begin{equation*}
Z_{\mathbf{1}}=\frac{\boldsymbol{X}_{\mathbf{1}}-\bar{x}_{1} \boldsymbol{X}_{\mathbf{0}}}{S D_{1}}, \quad Z_{\mathbf{2}}=\frac{\boldsymbol{X}_{\mathbf{2}}-\bar{x}_{2} \boldsymbol{X}_{\mathbf{0}}}{S D_{2}} \tag{37}
\end{equation*}
$$

where $S D_{1}$ and $S D_{2}$ are the standard deviation of $\left\{x_{1 i}\right\}$ and $\left\{x_{2 i}\right\}$, respectively. We see that $\boldsymbol{Z}_{\mathbf{1}}$ is a linear combination of $\boldsymbol{X}_{\mathbf{0}}$ and $\boldsymbol{X}_{\mathbf{1}} ; \boldsymbol{Z}_{\mathbf{2}}$ is a linear combination of $\boldsymbol{X}_{\mathbf{0}}$ and $\boldsymbol{X}_{\mathbf{2}}$. Since $\boldsymbol{\epsilon}$ to orthogonal to $\boldsymbol{X}_{\mathbf{0}}, \boldsymbol{X}_{\mathbf{1}}$ and $\boldsymbol{X}_{\mathbf{2}}$, it is orthogonal to $\boldsymbol{Z}_{\boldsymbol{1}}$ and $\boldsymbol{Z}_{\boldsymbol{2}}$ as well:

$$
\begin{equation*}
Z_{1} \cdot \epsilon=Z_{2} \cdot \epsilon=0 \tag{38}
\end{equation*}
$$

Recall that the mean of a vector \boldsymbol{U} is $\bar{u}=\boldsymbol{X}_{\mathbf{0}} \cdot \boldsymbol{U} / n$, and the correlation between \boldsymbol{U} and \boldsymbol{V} is $r_{u v}=\boldsymbol{Z}_{\boldsymbol{u}} \cdot \boldsymbol{Z}_{\boldsymbol{v}} / n$. Thus the orthogonality conditions of $\boldsymbol{\epsilon}$ mean that (1) $\boldsymbol{\epsilon}$ has zero mean, $\bar{\epsilon}=0$, and (2) $\boldsymbol{\epsilon}$ is uncorrelated with both \boldsymbol{X}_{1} and $\boldsymbol{X}_{\mathbf{2}}: r_{\epsilon 1}=r_{\epsilon 2}=0$.

To solve the regression equations (36), we take the scalar product of equation (33) with $\boldsymbol{X}_{\mathbf{0}}$, resulting in the equation

$$
\begin{equation*}
\bar{y}=\beta_{0}+\beta_{1} \bar{x}_{1}+\beta_{2} \bar{x}_{2} \tag{39}
\end{equation*}
$$

This means that the regression line passes through the average point ($\bar{x}_{1}, \bar{x}_{2}, \bar{y}$). Multiplying equation (39) by $\boldsymbol{X}_{\mathbf{0}}$ yields

$$
\bar{y} \boldsymbol{X}_{\mathbf{0}}=\beta_{0} \boldsymbol{X}_{\mathbf{0}}+\beta_{1} \bar{x}_{1} \boldsymbol{X}_{\mathbf{0}}+\beta_{2} \bar{x}_{2} \boldsymbol{X}_{\mathbf{0}}
$$

Subtracting the above equation from (33) gives

$$
\boldsymbol{Y}-\bar{y} \boldsymbol{X}_{\mathbf{0}}=\beta_{1}\left(\boldsymbol{X}_{\mathbf{1}}-\bar{x}_{1} \boldsymbol{X}_{\mathbf{0}}\right)+\beta_{2}\left(\boldsymbol{X}_{\mathbf{2}}-\bar{x}_{2} \boldsymbol{X}_{\mathbf{0}}\right)+\boldsymbol{\epsilon}
$$

Using the definition of the Z score vector, we can write the above equation as

$$
\begin{equation*}
S D_{y} \boldsymbol{Z}_{\boldsymbol{y}}=\beta_{1} S D_{1} \boldsymbol{Z}_{\mathbf{1}}+\beta_{2} S D_{2} \boldsymbol{Z}_{\mathbf{2}}+\boldsymbol{\epsilon} \tag{40}
\end{equation*}
$$

Taking the scalar product of the above equation with $\boldsymbol{Z}_{\mathbf{1}}$ gives

$$
\begin{equation*}
S D_{y} r_{y 1}=\beta_{1} S D_{1}+\beta_{2} S D_{2} r_{12} \tag{41}
\end{equation*}
$$

where $r_{y 1}=\boldsymbol{Z}_{\boldsymbol{y}} \cdot \boldsymbol{Z}_{\mathbf{1}} / n$ is the correlation between \boldsymbol{Y} and $\boldsymbol{X}_{\mathbf{1}}, r_{12}=\boldsymbol{Z}_{\mathbf{1}} \cdot \boldsymbol{Z}_{\mathbf{2}} / n$ is the correlation between $\boldsymbol{X}_{\mathbf{1}}$ and $\boldsymbol{X}_{\mathbf{2}}$. Equation (41) can be written as

$$
\begin{equation*}
\beta_{1}=r_{y 1} \frac{S D_{y}}{S D_{1}}-\beta_{2}\left(r_{12} \frac{S D_{2}}{S D_{1}}\right)=\beta_{y 1}-\beta_{2} \beta_{21}, \tag{42}
\end{equation*}
$$

where $\beta_{y 1}=r_{y 1} S D_{y} / S D_{1}$ is the slope in the simple regression for predicting \boldsymbol{Y} from $\boldsymbol{X}_{\mathbf{1}}$, and $\beta_{21}=r_{12} S D_{2} / S D_{1}$ is the slope in the simple regression for predicting \boldsymbol{X}_{2} from $\boldsymbol{X}_{\mathbf{1}}$.

Before deriving the final expression for β_{1}, let's point out two things. First, if $r_{12}=0$ (or equivalently $\boldsymbol{X}_{\mathbf{1}} \cdot \boldsymbol{X}_{\mathbf{2}}=0$) then $\beta_{1}=\beta_{y 1}$. That is to say that if $\boldsymbol{X}_{\mathbf{1}}$ and $\boldsymbol{X}_{\mathbf{2}}$ are uncorrelated (orthogonal), the slope β_{1} in the multiple regression is exactly the same as the slope $\beta_{y 1}$ in the simple regression for prediction \boldsymbol{Y} from $\boldsymbol{X}_{\mathbf{1}}$. The addition of the $\boldsymbol{X}_{\mathbf{2}}$ does not change the slope. Second, if $r_{12}>0$ and $\beta_{2}>0$, then $\beta_{1}<\beta_{y 1}$. The slope β_{1} decreases if $\boldsymbol{X}_{\mathbf{1}}$ and $\boldsymbol{X}_{\mathbf{2}}$ are positively correlated and if the slope of $\boldsymbol{X}_{\mathbf{2}}$ in the multiple regression is positive.

Let's go back to equation (42). If $r_{12} \neq 0$, the equation of β_{1} involves β_{2}. So β_{1} and β_{2} has to be solved together. Since $\boldsymbol{X}_{\mathbf{1}}$ and $\boldsymbol{X}_{\mathbf{2}}$ are symmetric, the equation for β_{2} can be obtained by simply exchanging the index between 1 and 2 of the β_{1} equation:

$$
\begin{equation*}
\beta_{2}=\beta_{y 2}-\beta_{1} \beta_{12}, \tag{43}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{y 2}=r_{y 2} \frac{S D_{y}}{S D_{2}} \quad \text { and } \quad \beta_{12}=r_{12} \frac{S D_{1}}{S D_{2}} . \tag{44}
\end{equation*}
$$

Substituting β_{2} from (43) into (42), we obtain

$$
\begin{equation*}
\beta_{1}=\beta_{y 1}-\left(\beta_{y 2}-\beta_{1} \beta_{12}\right) \beta_{21}=\beta_{y 1}-\beta_{y 2} \beta_{21}+\beta_{1} \beta_{12} \beta_{21} \tag{45}
\end{equation*}
$$

Note that the product

$$
\beta_{12} \beta_{21}=\left(r_{12} \frac{S D_{1}}{S D_{2}}\right)\left(r_{12} \frac{S D_{2}}{S D_{1}}\right)=r_{12}^{2} .
$$

Thus equation (45) becomes

$$
\beta_{1}=\beta_{y 1}-\beta_{y 2} \beta_{21}+r_{12}^{2} \beta_{1} \quad \Rightarrow \quad\left(1-r_{12}^{2}\right) \beta_{1}=\beta_{y 1}-\beta_{y 2} \beta_{21}
$$

or

$$
\beta_{1}=\frac{\beta_{y 1}-\beta_{y 2} \beta_{21}}{1-r_{12}^{2}}
$$

Using the expressions for $\beta_{y 1}, \beta_{y 2}$ and β_{12}, we find

$$
\begin{equation*}
\beta_{1}=b_{1} \frac{S D_{y}}{S D_{1}} \tag{46}
\end{equation*}
$$

where

$$
b_{1}=\frac{r_{y 1}-r_{y 2} r_{12}}{1-r_{12}^{2}}
$$

may be interpreted as the adjusted correlation between \boldsymbol{Y} and $\boldsymbol{X}_{\mathbf{1}}$ taking into account the presence of $\boldsymbol{X}_{\mathbf{2}}$. The expression for β_{2} is obtained by exchanging the index between 1 and 2 :

$$
\beta_{2}=b_{2} \frac{S D_{y}}{S D_{2}} \quad, \quad b_{2}=\frac{r_{y 2}-r_{y 1} r_{12}}{1-r_{12}^{2}} .
$$

Gathering all the results, we conclude that the regression coefficients are given by

$$
\begin{equation*}
\beta_{1}=b_{1} \frac{S D_{y}}{S D_{1}}, \quad \beta_{2}=b_{2} \frac{S D_{y}}{S D_{1}}, \quad \beta_{0}=\bar{y}-\beta_{1} \bar{x}_{1}-\beta_{2} \bar{x}_{2} \tag{47}
\end{equation*}
$$

with

$$
\begin{equation*}
b_{1}=\frac{r_{y 1}-r_{y 2} r_{12}}{1-r_{12}^{2}}, \quad b_{2}=\frac{r_{y 2}-r_{y 1} r_{12}}{1-r_{12}^{2}} \tag{48}
\end{equation*}
$$

In Section 1.8, we see that the RMSE in simple regression is related to $S D_{y}$ by $R M S E=\sqrt{1-r_{x y}^{2}} S D_{y}$. In multiple regression, we will show in Section 2.4 that the formula is generalized to

$$
R M S E=\sqrt{1-R^{2}} S D_{y}
$$

where R is the correlation between \boldsymbol{Y} and $\hat{\boldsymbol{Y}}$:

$$
R=\frac{\boldsymbol{Z}_{\boldsymbol{y}} \cdot \boldsymbol{Z}_{\hat{y}}}{n} .
$$

We will defer the calculation of R to Section 2.3. In the case of multiple regression with two variables considered here, R is given by

$$
\begin{equation*}
R=\sqrt{\frac{r_{y 1}^{2}+r_{y 2}^{2}-2 r_{y 1} r_{y 2} r_{12}}{1-r_{12}^{2}}} \tag{49}
\end{equation*}
$$

2.2 More Than Two Variables

Suppose we now want to fit $\left\{y_{i}\right\}$ with p variables $\left\{x_{1 i}, x_{2 i}, \cdots, x_{p i}\right\}$. The regression equation has $p+1$ parameters $\beta_{0}, \beta_{1}, \beta_{2}, \cdots, \beta_{p}$. It can be written in the vector form as

$$
\begin{gather*}
\boldsymbol{Y}=\hat{\boldsymbol{Y}}+\boldsymbol{\epsilon}=\sum_{j=0}^{p} \beta_{j} \boldsymbol{X}_{\boldsymbol{j}}+\boldsymbol{\epsilon} \tag{50}\\
\hat{\boldsymbol{Y}}=\sum_{j=0}^{p} \beta_{j} \boldsymbol{X}_{\boldsymbol{j}} \tag{51}\\
S S E=\boldsymbol{\epsilon} \cdot \boldsymbol{\epsilon}=\left(\boldsymbol{Y}-\sum_{j=0}^{p} \beta_{j} \boldsymbol{X}_{\boldsymbol{j}}\right) \cdot\left(\boldsymbol{Y}-\sum_{j=0}^{p} \beta_{j} \boldsymbol{X}_{\boldsymbol{j}}\right) \tag{52}
\end{gather*}
$$

To minimize $S S E$, we set the derivatives of $S S E$ with respect to $\beta_{j}(j=0,1, \cdots, p)$ to 0 . The resulting equations can be written as

$$
\begin{equation*}
\boldsymbol{X}_{\boldsymbol{j}} \cdot \boldsymbol{\epsilon}=0 \quad, \quad j=0,1, \cdots, p \tag{53}
\end{equation*}
$$

This means that $\boldsymbol{\epsilon}$ is orthogonal all $\boldsymbol{X}_{\mathbf{0}}, \boldsymbol{X}_{\mathbf{1}}, \cdots, \boldsymbol{X}_{\boldsymbol{p}}$, or equivalently, the mean of $\boldsymbol{\epsilon}$ is 0 and $\boldsymbol{\epsilon}$ is uncorrelated with any of the variables we are trying to fit.

To find the regression coefficients, we follow the same procedures as before. First, take the scalar product of equation (50) with $\boldsymbol{X}_{\mathbf{0}}$. The result is

$$
\begin{equation*}
\bar{y}=\beta_{0}+\sum_{j=1}^{p} \beta_{j} \bar{x}_{j} \tag{54}
\end{equation*}
$$

As before, this means that the regression line passes through the point of average. Next, we multiple the above equation by $\boldsymbol{X}_{\mathbf{0}}$:

$$
\bar{y} \boldsymbol{X}_{\mathbf{0}}=\beta_{0} \boldsymbol{X}_{\mathbf{0}}+\sum_{j=1}^{p} \beta_{j} \bar{x}_{j} \boldsymbol{X}_{\mathbf{0}}
$$

and then subtract it from equation (50):

$$
\boldsymbol{Y}-\bar{y} \boldsymbol{X}_{\mathbf{0}}=\sum_{j=1}^{p} \beta_{j}\left(\boldsymbol{X}_{\boldsymbol{j}}-\bar{x}_{j} \boldsymbol{X}_{\mathbf{0}}\right)+\boldsymbol{\epsilon}
$$

Using the definition of the Z score vector (19), we can write the above equation as

$$
S D_{y} \boldsymbol{Z}_{\boldsymbol{y}}=\sum_{j=1}^{p} \beta_{j} S D_{j} \boldsymbol{Z}_{\boldsymbol{j}}+\boldsymbol{\epsilon}
$$

Dividing both sides by $S D_{y}$ results in

$$
\begin{equation*}
\boldsymbol{Z}_{\boldsymbol{y}}=\sum_{j=1}^{p} b_{j} \boldsymbol{Z}_{\boldsymbol{j}}+\frac{\boldsymbol{\epsilon}}{S D_{y}}, \tag{55}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{j}=\beta_{j} \frac{S D_{j}}{S D_{y}} \tag{56}
\end{equation*}
$$

Taking the scalar product of equation (55) with $\boldsymbol{Z}_{\boldsymbol{i}}(i=0,1,2, \cdots, p)$, we obtain

$$
\begin{equation*}
\sum_{j=1}^{p} r_{i j} b_{j}=r_{y i}, \quad i=1,2, \cdots, p \tag{57}
\end{equation*}
$$

This is a system of linear equations for $b_{1}, b_{2}, \cdots, b_{p}$. Written them out, they look like

$$
\begin{aligned}
b_{1}+r_{12} b_{2}+r_{13} b_{3}+\cdots+r_{1 p} b_{p} & =r_{y 1} \\
b_{1} r_{21}+b_{2}+r_{23} b_{3}+\cdots+r_{2 p} b_{p} & =r_{y 2} \\
b_{1} r_{31}+b_{2} r_{32}+b_{3}+\cdots+r_{3 p} b_{p} & =r_{y 3} \\
\vdots & \vdots \\
b_{1} r_{p 1}+b_{2} r_{p 2}+b_{3} r_{p 3}+\cdots+b_{p} & =r_{y p}
\end{aligned}
$$

If all of the variables $\boldsymbol{X}_{\boldsymbol{j}}$ are uncorrelated (i.e. $r_{i j}=0$ if $i \neq j$), the solution is $b_{j}=r_{y j}$ and the slopes are $\beta_{j}=r_{y j} S D_{y} / S D_{j}$. This is exactly the same as the slopes in simple regression for predicting \boldsymbol{Y} from $\boldsymbol{X}_{\boldsymbol{j}}$.

There are no simple analytic expressions for b_{j} in general, but there are several well-known procedures to obtain the solution by successive algebraic operations, but we will not discuss the methods here.

Suppose all the b 's have been solved using one of those procedures, the slopes are given by equation (56) as

$$
\begin{equation*}
\beta_{j}=b_{j} \frac{S D_{j}}{S D_{y}}, \quad j=1,2, \cdots, p \tag{58}
\end{equation*}
$$

and the intercept β_{0} is given by equation (54) as

$$
\begin{equation*}
\beta_{0}=\bar{y}-\sum_{j=1}^{p} \beta_{j} \bar{x}_{j} . \tag{59}
\end{equation*}
$$

Finally, we should mention that the term "linear" in linear regession refers to a model being linear in the fitting parameters $\beta_{0}, \beta_{1}, \cdots, \beta_{p}$. For example, we can fit y_{i} by the model

$$
\begin{equation*}
y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} \sqrt{x_{i}}+\beta_{3} x_{i}^{2}+\beta_{4} \ln x_{i}+\beta_{5} \frac{x_{i}^{3}}{1+2^{x_{i}}} \tag{60}
\end{equation*}
$$

using the technique of multiple linear regression since the model is linear in $\beta_{0}, \beta_{1}, \cdots, \beta_{5}$. We simply label

$$
x_{1 i}=x_{i}, \quad x_{2 i}=\sqrt{x_{i}}, \quad x_{3 i}=x_{i}^{2}, \quad x_{4 i}=\ln x_{i}, \quad x_{5 i}=\frac{x_{i}^{3}}{1+2^{x_{i}}}
$$

and equation (60) can be written in vector form as

$$
\boldsymbol{Y}=\beta_{0} \boldsymbol{X}_{\mathbf{0}}+\beta_{1} \boldsymbol{X}_{\mathbf{1}}+\beta_{2} \boldsymbol{X}_{\mathbf{2}}+\beta_{3} \boldsymbol{X}_{\mathbf{3}}+\beta_{4} \boldsymbol{X}_{\mathbf{4}}+\beta_{5} \boldsymbol{X}_{\mathbf{5}}
$$

which is equation (50) with $p=5$. The key is to note that the least square prescription is to minimize $S S E$ by varying the paremeters β 's, not the independent variables x 's.

2.3 Correlation Between \boldsymbol{Y} and $\hat{\boldsymbol{Y}}$

To generalize the $R M S E$ expression in Section 1.8 for multiple regression, we consider the quantity R defined as the correlation between \boldsymbol{Y} and $\hat{\boldsymbol{Y}}$:

$$
\begin{equation*}
R=\frac{\boldsymbol{Z}_{\boldsymbol{y}} \cdot \boldsymbol{Z}_{\hat{\boldsymbol{y}}}}{n} . \tag{61}
\end{equation*}
$$

We first calculate the average of $\hat{\boldsymbol{Y}}$:

$$
\overline{\hat{y}}=\frac{1}{n} \hat{\boldsymbol{Y}} \cdot \boldsymbol{X}_{\mathbf{0}}=\frac{1}{n}\left(\beta_{0} \boldsymbol{X}_{\mathbf{0}}+\sum_{j=1}^{p} \beta_{j} \boldsymbol{X}_{\boldsymbol{j}}\right) \cdot \boldsymbol{X}_{\mathbf{0}}=\beta_{0}+\sum_{j=1}^{p} \beta_{j} \bar{x}_{j}=\bar{y},
$$

where we have used equation (51) for $\hat{\boldsymbol{Y}}$ and (54) for \bar{y}. From the definition of the Z score vector (19) and $\overline{\hat{y}}=\bar{y}$, we can write (61) as

$$
\begin{align*}
R & =\frac{\left(\boldsymbol{Y}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right) \cdot\left(\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right)}{n S D_{y} S D_{\hat{y}}} \\
& =\frac{\left(\hat{\boldsymbol{Y}}+\boldsymbol{\epsilon}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right) \cdot\left(\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right)}{n S D_{y} S D_{\hat{y}}} \\
& =\frac{\left(\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right) \cdot\left(\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right)}{n S D_{y} S D_{\hat{y}}} \\
& =\frac{S D_{\hat{y}}}{S D_{y}} \tag{62}
\end{align*}
$$

where we have used $\boldsymbol{\epsilon} \cdot \boldsymbol{X}_{\mathbf{0}}=0$ and $\boldsymbol{\epsilon} \cdot \hat{\boldsymbol{Y}}=0$ (since $\hat{\boldsymbol{Y}}$ is a linear combination of $\boldsymbol{X}_{\mathbf{0}}, \cdots \boldsymbol{X}_{\boldsymbol{p}}$ and all are orthogonal to $\boldsymbol{\epsilon})$. We have also used the definition of the standard deviation (18) to obtain the last line. Hence we have

$$
\begin{equation*}
R^{2}=\frac{S D_{\hat{y}}^{2}}{S D_{y}^{2}}=\frac{\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}, \tag{63}
\end{equation*}
$$

which is interpreted as the fraction of the variance of \boldsymbol{Y} explained by the linear model.

To compute R, we use equation (51) for $\hat{\boldsymbol{Y}}$ and (59) for β_{0}, and write

$$
\begin{aligned}
S D_{\hat{y}}^{2} & =\frac{1}{n}\left(\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right) \cdot\left(\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right) \\
& =\frac{1}{n}\left[\left(\beta_{0}-\bar{y}\right) \boldsymbol{X}_{\mathbf{0}}+\sum_{i=1}^{p} \beta_{i} \boldsymbol{X}_{\boldsymbol{i}}\right] \cdot\left[\left(\beta_{0}-\bar{y}\right) \boldsymbol{X}_{\mathbf{0}}+\sum_{j=1}^{p} \beta_{j} \boldsymbol{X}_{\boldsymbol{j}}\right] \\
& =\frac{1}{n}\left[\sum_{i=1}^{p} \beta_{i}\left(\boldsymbol{X}_{\boldsymbol{i}}-\bar{x}_{i} \boldsymbol{X}_{\mathbf{0}}\right)\right] \cdot\left[\sum_{j=1}^{p} \beta_{j}\left(\boldsymbol{X}_{\boldsymbol{j}}-\bar{x}_{j} \boldsymbol{X}_{\mathbf{0}}\right)\right] \\
= & \frac{1}{n}\left(\sum_{i=1}^{p} S D_{i} \beta_{i} \boldsymbol{Z}_{\boldsymbol{i}}\right) \cdot\left(\sum_{j=1}^{p} S D_{j} \beta_{j} \boldsymbol{Z}_{\boldsymbol{j}}\right) \\
= & \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{p} S D_{i} S D_{j} \beta_{i} \beta_{j} \boldsymbol{Z}_{\boldsymbol{i}} \cdot \boldsymbol{Z}_{\boldsymbol{j}} \\
= & \sum_{i=1}^{p} \sum_{j=1}^{p} S D_{i} S D_{j} \beta_{i} \beta_{j} r_{i j} \\
& R^{2}=\frac{S D_{\hat{y}}^{2}}{S D_{y}^{2}}=\sum_{i=1}^{p} \sum_{j=1}^{p} b_{i} b_{j} r_{i j},
\end{aligned}
$$

where we have used the definition of b_{j} in equation (56). The sum can be simplified by noting that b_{j} satisfy equation (57), and thus we obtain

$$
\begin{equation*}
R=\sqrt{\sum_{i=1}^{p} b_{i} r_{y i}} \tag{64}
\end{equation*}
$$

When the solution of b_{i} is obtained, R can be calculated using the above equation. In the case of multiple regression with two variables $(p=2), b_{1}$ and b_{2} are given by equation (48). Plugging them into equation (64), we obtain equation (49).

2.4 Root Mean Square Error

As in Section 1.8, we define $S S T$ and $S S M$ as

$$
\begin{aligned}
& S S T=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\left(\boldsymbol{Y}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right) \cdot\left(\boldsymbol{Y}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right) \\
& S S M=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}=\left(\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right) \cdot\left(\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right)
\end{aligned}
$$

It follows from the definition of standard deviation that

$$
\begin{equation*}
S S T=n S D_{y}^{2} \tag{65}
\end{equation*}
$$

and it follows from (63) that

$$
\begin{equation*}
S S M=R^{2} S S T \tag{66}
\end{equation*}
$$

The identity $S S T=S S M+S S E$ still holds in muiltiple linear regression. The proof is almost exactly the same as in Section 1.8.

We start with the identity

$$
\boldsymbol{Y}-\bar{y} \boldsymbol{X}_{\mathbf{0}}=(\boldsymbol{Y}-\hat{\boldsymbol{Y}})+\left(\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right)=\boldsymbol{\epsilon}+\left(\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right)
$$

Take the scalar product with itself:

$$
\begin{aligned}
\left(\boldsymbol{Y}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right) \cdot\left(\boldsymbol{Y}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right) & =\left[\boldsymbol{\epsilon}+\left(\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right)\right] \cdot\left[\boldsymbol{\epsilon}+\left(\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right)\right] \\
S S T & =S S E+S S M+2 \boldsymbol{\epsilon} \cdot\left(\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right)
\end{aligned}
$$

Since $\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}$ is a linear combination of $\boldsymbol{X}_{\mathbf{0}}, \boldsymbol{X}_{\mathbf{1}}, \cdots, \boldsymbol{X}_{\boldsymbol{p}}$ and $\boldsymbol{\epsilon}$ is orthogonal to all these vectors, $\epsilon \cdot\left(\hat{\boldsymbol{Y}}-\bar{y} \boldsymbol{X}_{\mathbf{0}}\right)=0$ and so we have

$$
\begin{equation*}
S S T=S S M+S S E \tag{67}
\end{equation*}
$$

Combining equation (65), (66) and (67), we have $S S E=n\left(1-R^{2}\right) S D_{y}^{2}$. It follows from the definition of $R M S E=$ $\sqrt{S S E / n}$ that

$$
\begin{equation*}
R M S E=\sqrt{1-R^{2}} S D_{y} \tag{68}
\end{equation*}
$$

which is the generalization of equation (32).

[^0]: ${ }^{1}$ Careful students may realize that this only gaurantees that $S S E$ is stationary but not necessarily minimum. There is also a concern whether the resulting solution is a global minimum or a local minimum. Detail analysis (see Section 1.3) reveals that the solution in our case is a global minimum.

