Astro 210 Lecture 14 Feb 19, 2018

Announcements

- HW4 due online in PDF, Friday 5:00 pm
- Hour Exam grading underway
- Night Observing begins this week

Campus Observatory. Mon, Tue, Wed, Thur. 7–9pm bring **report form** available on Moodle take and submit **selfie** while there

• extra **Planetarium show** this Thursday Feb 22

FYI: Interesting Upcoming Lectures

Not part of class, but great talks with amazing speakers

Probing Behind the Man in the Moon – Results from NASA's GRAIL Mission Prof. Jay Melosh, Perdue Astronomy Colloquium, Tomorrow Tues Feb. 20, 3:45-4:45pm, Astro Bldg 134

Mapping the Nearest Stars for Habitable Worlds

Iben Distinguished Lecturer: Prof. Sara Seager, MIT Astronomy Colloquium, Tues Mar 6, 3:45-4:45pm, NCSA Audi-No torium

Telescopes: The Story Thus Far

Telescope jobs:

- 1. collect/concentrate photons
- 2. detect photons
- 3. create image and/or spectrum

Research telescopes today are all reflectors

- Q: meaning?
- Q: what's the alternative?
- *Q*: why are reflectors preferable?
- *Q*: which is your eye?

iClicker Poll: Telescope Properties

Which of these is the most important aspect of a telescope?

- A Ability to magnify small angular regions
- B Ability to detect faint objects (small flux)
- C Ability to see fine detail (features on small angular scales)

Telescope Power

telescope priorities and dependence on lens/mirror diameter D ("aperture")

***** Light Gathering Power

astronomical objects are dim \rightarrow need as much light as possible \rightarrow need "photon bucket" light gathering power \propto area of lens/mirror $\propto D^2$ bigger is better!

Hubble: D = 2.4 m

Keck (Hawaii): $D = 10 \text{ m} \rightarrow 17 \times \text{ the light gathering power!}$

• so for a fixed exposure time,

Keck can see objects 17 \times fainter flux

Ю

• or to see the same level of brightness

Keck needs to expose 17 \times less time

***** Angular Resolution

ang res = smallest angular separation distinguishable \rightarrow sets *angular size* of *finest detail* in image

wave nature of light:

passing through finite telescope aperture (non-infinite diameter) light rays diffract: bent

 \rightarrow pointlike source image smeared into blob (Airy disk)

point spread "blob" size: smallest angular size measurable diffraction sets unavoidable limit:

$$\theta_{\rm obs} \ge \theta_{\rm min,obs} = \theta_{\rm diff} = 1.22 \frac{\lambda}{D}$$
(1)

objects separated by $\theta < \theta_{\rm obs}$ smeared into one blob

σ

Keck: $\theta_{diff} = 0.01$ arc sec at 500 nm

diffraction limit sets optimal telescope resolution

but: Earth *atmosphere* is turbulent – fluctuating density

- \rightarrow light path distorted
- and distortion rapidly fluctuates
- \rightarrow light path rapidly fluctuates
- \rightarrow point sources appear to jiggle: "twinkling"
- www: twinkle animation

twinkling further smears out point source image

- $\rightarrow \theta_{\text{obs,Keck}} = \theta_{\text{atm}} \ge 1 \text{ arc sec} \gg \theta_{\text{diffract}}$
- unavoidable in ground-based observations
- better with smoother airflow ("good seeing")

Q: so obviously, the solution is?

go to space! \rightarrow HST $\theta_{diff} = 0.05$ arc sec at 500 nm this is the main motivation for Hubble Telescope! \rightarrow unprecedented angular resolution

***** Magnification

only worthwhile if enough light gathering power & resolution \rightarrow need to have a sharp image to magnify! magnification set by focal lengths of objective (i.e., main mirror) and eyepiece: magnification = $f_{\rm obj}/f_{\rm eye}$

Telescopes: Detectors

Once light collected, focused, need to

- detect photons
- determine λ /colors

Historical choice:

- naked eye just look!
- Q: Problems? other means of detection?

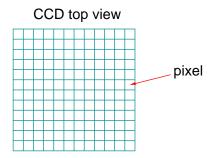
naked eye as photodetector benefits:

- readily available, and cheap!
 problems:
- only $\sim 1\%$ of photons detected!
- can't store image
- only sensitive to small portion of EM spectrum (visible λ s)

photographic film

better!

- \bullet can collect light \rightarrow see much dimmer objects
- stores image

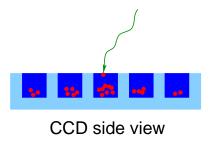

but: efficiency still small

 $\stackrel{,}{\sim}$ only $\sim few\%$ of incoming γ s registered on film

• Charged-Coupled Device (CCD)

same technology as digital camera, camcorder!

setup: silicon wafer = semiconductor
with a grid/array of capacitors
serve as picture elements-pixels



how it works:

photons \rightarrow silicon $\rightarrow e$ knocked out (photoelectric effect) charge accumulates in capacitors (e^- potential well = "bucket") for each pixel:

total charge $~\propto~$ number of incident photons

after exposure ("integration") time, read out array charge pattern \rightarrow image! and flux measurements!

Q: benefits of CCDs?

CCDs: The Good and the Bad

CCDs have many great features

- \star efficiency: > 80% of incident photons detected
- \star linearity: charge signal \propto photon counts \propto flux
- \star digital data \rightarrow good for computers
- \star essentially all modern telescopes HST, Keck use CCDs

downside:

- expen\$ive, hard to make large CCD's
- CCDs count photons but give no λ info Q: do we care? what's the fix?

Colors and Spectra

CCDs count photons, no λ info

but: spectral/color information is critical for astronomy e.g., encodes temperature, composition, ...

imaging

place different filter in front of CCD each allowing only some wavelength range $\Delta\lambda$ can be relatively broad "passbands" or "color" www: DECam filters or can focus on important lines, e.g., Balmer H α

spectroscopy

""" ω use grating or prism to spread ("disperse") light by <math> λthen position on CCD $\leftrightarrow λ$

Field of View

key telescope property: *field of view* area of sky visible in one image

Note: 2-D *areas* on sky, i.e., on celestial sphere quantified using spherical angle technology for sphere of radius r:

- in 1-D arc length s subtends ordinary angle $\theta = s/r$ range $\theta \in [0, 2\pi]$ radians
- in 2-D, patch on sphere of area A subtends solid angle

$$\Omega = \frac{A}{r^2}$$

units: dimensionless, but 1 steradian = 1 sr = 1 radian² can convert to deg² using deg/rad ratio *range:* $\Omega \in [0, 4\pi]$ sr

14

Q: estimate human eye field of view?

Fields of Dreams

Vote your conscience:

iClicker Poll: Rank these from *largest* to *smallest* field of view

- A paper towel tube, drinking straw, Hubble telescope
- B paper towel tube, Hubble telescope, drinking straw,
- С

Hubble telescope, paper towel tube, drinking straw

Fields of View

- naked eye: see almost a full hemisphere $\Omega_{\rm fov} \approx 2\pi$ steradian = 2π rad²
- typical modern telescopes, e.g., Hubble, Keck: $\Omega_{fov}\approx 1 \mbox{ arcmin}\times 1 \mbox{ arcmin}=1 \mbox{ arcmin}^2 \mbox{ much smaller than}$ human eye

drinking straw: $\Omega_{straw} \approx 1 \text{ deg}^2 = 3600 \text{ arcmin}^2 \approx 3600 \Omega_{scope}!$

Field of View and LSST

 \Rightarrow modern telescopes (so far!) have *tiny* fields of view! priority has been to deeply study small regions of sky

But a revolution is coming...

Large Synoptic Survey Telescope www: LSST

- site: Cerro Pachón ridge, Andes mountains, Chile
- primary mirror diameter D = 8.4 m: large but not unusual
- field of view Ω_{fov} = 10 deg² enormous! requires 3.2 Gigapixel camera! first telescope to have such a large field of view
- Illinois is LSST member; Astronomy, Physics, NCSA involved computing challenge: 20 TB/night, 60 Petabytes in 10 years

17

Q: why is such a large field of view useful? what does this allow?

Coming Soon–Cosmic Movie & Wallpaper

thanks to large field of view LSST can scan entire night sky in a few days! and then repeat this scan for ≈ 10 years

result: \approx 1000 deep digital images of *every point* on the southern celestial sphere, spanning 10 years!

Strategy: compare images of same region

- some things won't show any change Q: like? add exposures to get very deep images "The Sky: The Wallpaper"
- other things will show change! Q: like?
 subtract exposures to find & monitor changes
 → reveal celestial variability over timescales ~hours to years
 "The Sky: The Movie"
 ⇒ this has never been done on such a huge scale!