Astro 210 Lecture 15 Feb 21, 2018

Announcements

- HW4 due online in PDF, Friday 5:00 pm
- Hour Exam grading underway
- Night Observing begins this week...weather permitting Campus Observatory. Wed, Thur. 7–9pm bring report form available on Moodle take and submit selfie while there
- extra extra Planetarium show tomorrow Thursday Feb 22

Last time: telescopes (optical) continued a major theme of this course...

Nature uses only the longest threads to weave her patterns, so each small piece of her fabric reveals the organization of the entire tapestry.

-Richard Feynman, 1965, The Character of Physical Law

example: tight interconnections among astronomy, astrophysics, and cosmology fundamental physics engineering & technology

Ν

advances in each area make possible advances on the others

Invisible Astronomy

before 20th century: astronomy = optical astronomy visible waveband only known form of light

Now: view the cosmos across the full electromagnetic spectrum \rightarrow radio, IR, UV, X-ray, γ -ray

Q: why? what new information do these bring?

key issue: atmosphere is *not* transparent

to all wavelengths

www: atmospheric transmittance

Q: patterns?

 $_{\omega}$ Q: implications?

Astronomy Beyond the Visible

the cosmos shines across the entire EM spectrum

- different wavebands \leftrightarrow different emission processes, e.g.,: $\lambda = 21 \text{ cm}$: radio waves from cold, diffuse H atoms $E \approx 1 \text{ MeV} \approx m_e c^2$: γ -rays from colliding neutron stars
- our Galaxy is opaque at some λ , transparent at others \Rightarrow can't see Galactic center with visible light!

radio, microwave/mm: large antennas

since λ very large \rightarrow need huge collecting area for angular res. \rightarrow arrays of antennae

www: VLA, Arecibo, SPT, ALMA

4

infrared: mostly requires space, and cooling *Q*: why? shortest λ visible from ground at airline altitudes can see mid-IR www: Sofia for far-IR must go to space www: Spitzer, JWST X-ray: don't penetrate atmosphere → must go to space to focus: scatter at glancing angle detectors: measure energy deposited www: Chandra, XMM

Gamma-ray: stopped by atmosphere

- from ~ 1 to 300 GeV $\approx m_e c^2$ to $m_p c^2$: space-based detectors similar to high-energy physics www: Fermi
- \gtrsim 300 GeV: each photon creates particle shower that travels through atmosphere, excites molecules detect resulting emission/particles from ground!
- www: HESS, Veritas, HAWC

С

Multimessenger Astronomy

20th Century Physics:

- the cosmos contains more particles than photons!
- there are more forces/interactions than electromagnetism

21th Century Astronomy: observe other messengers from afar \rightarrow non-electromagnetic radiation!

\star neutrinos

arise and interact via weak nuclear interaction

- ★ cosmic rays (relativistic nuclei and electrons) interact via strong nuclear interaction (and also EM)
- * gravitational radiation ("gravity waves") arise via strong gravitational interactions

σ

Much more about these soon!

The Solar System

 \neg

The Solar System

www: Place in the Big Picture

Why study the Solar System?

▷ it's home!

▷ use present to learn about past

 \rightarrow clues for origins of Earth & Sun

▷ help understand origin of exoplanets: compare/contrast

Sociology: traditionally, astronomy divided into study of solar system vs extrasolar objects boundary is artificial, and somewhat loosening now...

 \odot

Basic Organization www: SS lineup

Terrestrial planets (Earth-like): smaller, rocky, warmer Mercury, Venus, Earth/Moon, Mars

Asteroid Belt: rocky bodies (Ceres) and debris

Jovian planets (Jupiter-like): large, gaseous, colder Jupiter, Saturn, Uranus, Neptune

Kuiper Belt: Icy bodies (Pluto, Eris, ...) and debris

Oort Cloud: Very distant icy debris

 $^{\circ}$ Pluto: in summer 2006, demoted to "dwarf planet" \rightarrow will discuss what's behind this

Patterns in Planetary Orbital Dynamics

all planets & asteroids:

- orbit Sun in same direction
- orbit planes close to ecliptic (small inclination) ...except Pluto
- orbits almost circular (small eccentricity) ...except Pluto

But could it have been otherwise?

Q: What rules does Newton impose on bound orbits?

Vinit

 $r_{\rm init}$

And note the near-circularity of orbits: consider a planet at *initial distance* \vec{r}_{init} and release with *initial velocity* \vec{v}_{init}

 $\stackrel{{}_{\scriptstyle \ominus}}{=}$ Q: how does orbit depend on $\vec{v}_{\sf init}$ magnitude, direction? Q: how to adjust \vec{v} to get a circular orbit?

Newton/Kepler Motion and Initial Conditions

Given:

- \bullet initial position $\vec{r_{\rm init}},$ and
- velocity \vec{v}_{init}

trajectory (orbit) completely determined by Newton's laws

• if $v_{\text{init}} \ge v_{\text{esc}}$, orbit is *unbound*

 \rightarrow leaves solar system on parabolic or hyperbolic orbit

• for $v_{init} < v_{esc}$, a *bound* orbit: ellipse or circle...but which one?

iClicker Poll: Orbits and Initial Conditions

What if bound orbit where \vec{v}_{init} has nonzero component along \vec{r}_{init} ? Q: what kind of orbit will this be?

A ellipse
$$(e > 0)$$

B circle
$$(e = 0)$$

The Miracle of Circular Orbits

• for $v_{\text{init}} < v_{\text{esc}}$, a *bound* orbit

if \vec{v}_{init} has any component along \vec{r}_{init} velocity is not purely tangential i.e., failure to meet circular requirement $\vec{v}_{circ} \perp \vec{r}$ \Rightarrow orbit must be an ellipse

but even if $\vec{v}_{init} \perp \vec{r}_{init}$, circle not guaranteed if $v_{init} \neq v_{circ} = \sqrt{GM/r_{init}}$, orbit *must* be an **ellipse**

circular orbits result only if $\vec{v}_{init} \perp \vec{r}_{init}$ and $v_{init} = v_{circ}$ exactly!

Lesson: ellipse is "generic" bound orbit

 $\frac{1}{\omega}$ circular orbits are "fine tuned" and special

 \Rightarrow the near-circularity of planet orbits cries out for explanation!

Planet Properties

Collected here for reference; discussion follows Note trends, distinctions between terrestrial/Jovian

Property	Terrestrial	Jovian	Pluto
Members	Mercury, Venus	Jupiter, Saturn	Pluto
	Earth+Moon, Mars	Uranus, Neptune	similar for KBOs=Eris+?
semimajor axis a	0.4 – 1.5 AU	5.2 – 30 AU	39 AU
size R	\sim earth	4–11 earth	\sim 0.2 earth
mass	\lesssim earth	15–300 earth	\sim 0.002 earth
density	3000-5000 kg/m ³	$\sim 1000~{ m kg/m^3}$	~ 2000 kg/m ³
interior	rocks, metals	gas, ice, metal core	rocky core + ice mantle?
spin period	\gtrsim 1 day	\lesssim 1 day	6 days
atmosphere	none, CO_2 , O_2 , N_2	H_2 , He, H-compounds	N_2 , methane CH_4 , CO

Composition

composition = what mix of elements

note: density \leftrightarrow composition connection

density: mass/volume M/Vfor solids & liquids: denser \rightarrow richer in heavy elements e.g., water (H₂O): $\rho = 1000 \text{ kg/m}^3$ rocks (O,Si): $\rho \sim 3000 \text{ kg/m}^3$ metals (Ni,Fe): $\rho \sim 6000 \text{ kg/m}^3$

for planets, once mass M and radius R are known Q: how? can compute *average* density

15

$$\langle \rho \rangle = \frac{M}{V} = \frac{3M}{4\pi R^3} \tag{1}$$

Average Planetary Density

- Q: what trends do you notice?
 - Q: what does this teach us?
 - Q: what are limitations of this comparison?

Planet Spins

Observed spins: general trends

almost all planet spin in roughly same direction as orbit i.e., angle ("obliquity") between spin and orbit axes is *small* and so spin angular momentum vectors \vec{J} typically roughly aligned with orbit angular momentum \vec{L} i.e.: $\uparrow_{\text{orbit}}\uparrow_{\text{spin}}$

 \rightarrow another highly organized pattern demanding explanation

note: important exceptions do exist

- Venus: spin is retrograde ("upside-down") $\uparrow_{orbit}\downarrow_{spin}$
- Uranus: sideways ↑_{orbit}→_{spin}
- www: planetary obliquities
- $\stackrel{H}{\sim}$ \rightarrow these too needs to be understood

Surface Temperature

Measuring Temperatures

Q: How to measure planet surface temperatures? ...before visiting! have plan ahead to decide on wardrobe! hint-not Wien's law in simpleminded way! (consider blue Earth!)

Q: expectations from trends of T vs distance d from Sun?

iClicker Poll: Temperature and Planet Size

Consider two planets both at same distance d from Sun and identical (same composition, etc), except planet Huge is larger than planet Tiny: $R_{Huge} > R_{Tiny}$

Vote your conscience: Which planet is hotter?

B planet Tiny

they have the same temperature