Astro 210 Lecture 18 February 28, 2018

Announcements

- HW5 due online in PDF, Today 5:00 pm
- HW6 posted, due online next Friday March 9
- Night Observing next week

Campus Observatory. Mon, Tue, Thur 7–9pm bring **report form** available on Moodle take and submit **selfie** while there

• Distinguished Lecture & Extra Credit Opportunity Prof. Sara Seager, MIT,

"Exoplanets and the Search for Habitable Worlds"

7-8 pm, Wed March 7, Lincoln Hall Theater
 Selfie+online report = bonus points ("extra credit")

Right After the One Small Step

(Garbled) the surface is fine and powdery. I can kick it up loosely with my toe. It does adhere in fine layers, like powdered charcoal, to the sole and sides of my boots. I only go in a small fraction of an inch, maybe an eighth of an inch, but I can see the footprints of my boots and the treads in the fine, sandy particles. [...] It [the landscape] has a stark beauty all its own. It's like much of the high desert of the United States. It's different, but it's very pretty out here. – Niel A. Armstrong

Magnificent desolation.

– Buzz Aldrin

July 21 1969 Mare Tranquillitatis–Sea of Tranquility

Ν

* "soil" regolith = "rock blanket"

www: footprint

www: moonwalk video

dust, rock fragments: mostly pulverized Moonrock

- a few% accumulated debris from many impacts
- tips for lunar tourists/settlers:
- no significant atmosphere \rightarrow no UV, X-ray protection but can do high-energy astronomy from the ground!
- slow rotation \rightarrow long "days" huge day/night temp diff: 370K vs 125 K Q: why?

Lunar Cratering and Solar System Impact History

highlands: lighter in color, heavily cratered maria smooth: fewer craters

Why the difference?

- ★ impactor bombardment random but same over all Moon large regions cannot "hide"
- * cratering differences immediately show maria younger!
- **★** combine with lunar rock composition (maria basaltic)
 - \rightarrow maria formed by lava flows due to large impacts
 - \rightarrow younger surface \rightarrow fewer craters

Implications

4

- violent impacts common in the past
- \bullet fewer impacts after maria formed \rightarrow bombardment has slowed
- can use cratering counts to deduce impact history
 - \Rightarrow huge bombardment rate initially

The Moon: Origin

Earth & Moon similar in composition of crust, different in core

- Fission model ("separated at birth") : moon spun out from rapidly rotating earth
- Binary ("Sister") model earth and moon formed together as binary system
- Capture model
 "vagabond" moon gravitationally captured by earth
- giant impact model
 Moon created in collision of Mars-sized object with early Earth

Q: pros, cons of each?

СЛ

• Fission model ("separated at birth") :

unlikely: ang mom problem-Earth wouldn't rotate fast enough

- Binary ("Sister") model unlikely: where do differences come from?
- Capture model unlikely: where do similarities come from?
- giant impact model
 "least unlikely" −accounts for both differences and similarities
 → early solar system a violent place!

o www: impact movie

Moon Wrapup

www: image comparison

Q: compare/contrast?

Mercury

short year, but long days: $P_{spin} = 59$ Earth days

huge temperature swings:

 $T_{\text{day}} = 700 \text{ K}, T_{\text{night}} = 80 \text{ K}$

Moonlike in many ways

- only slightly larger than the Moon
- cratered surface, muted colors
- no permanent atmosphere, but escaping O_2 , Na, H₂, He, K

Venus

Properties

 M, R, ρ_{avg} almost identical to Earth's: "sister planet" \rightarrow probably very Earth-like initially now: hellish!

atmosphere: thick

mostly CO₂; clouds of concentrated sulfuric acid surface pressure $P_0 = 90$ atm = 90× Earth

surface T = 750K = 380 C = 800 F; melts lead!

www: Venera 9 & 10 comparison

www: Venera 13 image

 $^{\circ}$ landers lasted for $\sim 1-2$ hr, then got cooked found: flat rocks, basaltic soil \rightarrow volcanic activity

```
other evidence for "geo" logical activity on Venus:

www: Guinevere plains---stretching forces from mantle

www: Venus craters

crater counts similar to Earth-a few 100 Myr old

but no plates! Has to be resurfaced some other way, perhaps

active volcanism?

www: radar map: volcano lava flows?
```

Note: $T_{\text{surface}} \gg T_{\text{eq}}(a_{\text{Venus}}) \approx 230 \text{ K}$ from our master equation \rightarrow i.e., much *hotter* than expected *equilibrium temperature* Q: Why so hot?

Greenhouse Effect

basic idea: atmosphere traps thermal energy surface region at different T than top of atmosphere in HW6 you work this out in detail note: important for Earth and Mars too

Consider radiative energy flows
incoming: sunlight-visible wavelengths, atm transparent
Venus surface not dark!
outgoing: surface thermal (BB) emission: IR
but CO₂ in atm blocks IR, absorbs energy
⇒ atmosphere acts like blanket

11

iClicker Poll: CO₂ and Surface Temperature

Imagine Sun's radiation and Venus orbit fixed but more CO_2 added to Venus' atmosphere

What would be the effect on Venus' surface temperature T_s ?

A T_s stays the same

Venus: probably initially cooler, had liquid water(?) note-early Sun was 30% dimmer!

if so, CO_2 dissolved in oceans, rocks note: CO_2 in Earth rocks, oceans is enough for 70 atm! ...just like Venus!

Now imagine: watery Venus heated a bit Q: What is effect of heating on atmosphere? on temperature?

```
if early water-bearing Venus heated, positive feedback loop:
```

```
Heat \rightarrow surface T \uparrow
```

```
\rightarrow H_20 evap, atm \rightarrow CO_2 released as well
```

```
\rightarrow repeat until all H<sub>2</sub>O evaporated!
```

```
also: H_2O molecules lighter than CO_2
```

- \rightarrow all H_2O evaporated
- \rightarrow go to upper atm
- $\gamma + H_2O \rightarrow H + OH$, H escapes
- \Rightarrow water lost! warming irreversible
- \rightarrow runaway greenhouse effect

Mars

Vital Statistics: $R \simeq 1/2 R_{\text{Earth}}$ $M \simeq 10\% M_{\text{Earth}}$ $\rho_{\text{avg}} = 3900 \text{ kg/m}^3 < \text{Earth} \rightarrow \text{smaller core}$

atmosphere thin: $P_0 \sim 1/200$ Earth atm \rightarrow liquid water cannot exist! sublimates, freezes composition: heavy species–95% CO₂, $\sim 2\%$ N₂, Ar

- smaller mass \rightarrow more escape
- no ocean to absorb CO₂

15

```
surface temperature: T \sim 190-240 K polar caps: frozen water, CO<sub>2</sub>; cap sizes vary: seasons!
```

```
soil – iron rich (red color \rightarrow iron oxide=rust)
```