Astro 210 Lecture 20 March 5, 2018

Announcements

- HW6 due online in PDF, Friday 5:00 pm
- Night Observing this week
   Campus Observatory. Mon, Tue, Thur 7–9pm
   bring report form available on Moodle
   take and submit selfie while there
- Distinguished Lecture & Extra Credit Opportunity
   Prof. Sara Seager, MIT,
   "Exoplanets and the Search for Habitable Worlds"

7-8 pm, Wed March 7, Lincoln Hall Theater

Selfie+online report = bonus points ("extra credit")
 Tech alternative: Astro Colloquium 3:45pm Tue Mar 6, NCSA Auditorium

### Water on Mars

today: ice-polar caps, permafrost in soil

but much evidence for liquid water in past!

www: outwash ''river delta''

- "arroyos" river-like channels (run downhill, show sandbars!)
- Martian meteorites: were wet when made
- Mars Global Surveyor: flat basin in N. hemisphere w/ "coastline" features

channels stop here  $\rightarrow$  ancient ocean?

- gullies-small but uneroded → recent
   2005-new gully created confirms active flows
- Mars Phoenix Lander 2008: excavation exposed white material gone in 1 day: timescale for water ice  $\rightarrow$  vapor (sublimation)
- Ν

# Life on Mars?

Water  $\rightarrow$  maybe life? No clear evidence

But: ancient Mars meteorite (discovered on Earth)
Q: how did it get here? how know it's Martian?
claimed to have fossil bacteria
www: microscopic image--bacteria-like figures?
→ perhaps life long ago?

*Q:* even if Mars had bacterial life–why is this a Big Deal?

# Jupiter

prototype for Jovian planets mass:  $M = 1.9 \times 10^{27}$  kg =  $0.1\% M_{\odot} \simeq$  sum of rest of planets radius: about 10  $R_{\text{Earth}}$  $\rho_{\text{avg}} \simeq 1,300$  kg/m<sup>3</sup>  $\ll \rho_{\text{rock}}$  for sure isn't rocky! composition: H 79%, He 20%, 1% other  $\rightarrow$  very similar to sun color: ammonia clouds

spin: rapid, 9hr 50min  $\rightarrow$  oblate ("M&M shape")  $\rightarrow$  atmospheric circulation!

www: Jupiter

high pressure regions: zones

low pressure regions: belts

Great Red Spot: long-lived storm

www: Red Spot

www: red spot animation

4

# **Jupiter Interior**

www: Giant planet interiors no solid surface!

gaseous atmosphere becomes increasingly dense until compressed liquid  $H_2$  (hi pressure) then liquid H metal, probably rocky core (differentiation of heavy elements)

# Saturn

#### Rings

not solid! many small icy rocks, dust each has individual circular Keplerian orbit  $\rightarrow$  rings have different periods, speeds depending on distance  $\sim$  few  $\times$  100 m thick: razor-thin! aligned with equator

Cassini-Huygens: at Saturn 2004-2017 spectacular views of rings detailed data on ring structure, interaction with moons www: Cassini images, movies

σ

# iClicker Poll: Saturn's Rings

Saturn's rings made of orbiting particles

What is pattern of orbit periods, from innermost to outermost?

$$P_{\text{inner}} < P_{\text{mid}} < P_{\text{outer}}$$

$$\mathsf{B} \quad P_{\mathsf{inner}} = P_{\mathsf{mid}} = P_{\mathsf{outer}}$$

 $P_{\text{inner}} > P_{\text{mid}} > P_{\text{outer}}$ 

So: why does Saturn have rings? what gives them their structure?

# **Tidal Forces: Roche Limit**

consider "orbiter" object held together **by gravity alone** "self-gravitating" mass m, size rthink: "rubble pile" held together by its own gravity put in gravitational field of larger object M

tidal forces of M in competition with self-gravity Q: why? when do tidal forces tear it apart?



competition: *inward self-gravity* vs. *outward tides* 

•grav. force on test particle at orbiter surface r is  $F_{\rm g} = Gmm_{\rm test}/r^2$ 

•large body of mass  $\mathcal{M}$  at d exerts tidal force  $F_{\rm t}=2G\mathcal{M}m_{\rm test}r/d^3$ 

Ratio of inward orbiter gravity to outward tides:

$$\frac{F_{\mathsf{g}}}{F_{\mathsf{t}}} = \frac{1}{2} \frac{m}{\mathcal{M}} \left(\frac{d}{r}\right)^3$$

d

m

R

M

for fixed m and  $\mathcal{M}$ :

Q

*Q*: behavior for large separation  $d \gg r$ ? for  $d \ll r$ ? *Q*: critical distance?

### **Roche Limit**

tides and gravity equal when  $Gmm_{\rm test}/r^2 = 2G\mathcal{M}m_{\rm test}r/d^3$ , or

$$d = d_{\text{Roche}} = \left(2\frac{\mathcal{M}}{m}\right)^{1/3} r \tag{1}$$

and in terms of average densities, e.g.,  $\rho_M = 4\pi \mathcal{M}/3R^3$ 

$$d_{\text{Roche}} = \left(2\frac{\rho_M}{\rho_m}\right)^{1/3} R \tag{2}$$

if densities of similar, so that  $\rho_m \approx \rho_D Mm$ , then

$$d^3_{\text{Roche}} \approx 2R^3 \Rightarrow d \approx 2^{1/3}R = 1.3R$$
 (3)

more detailed analysis (fluid orbiter):  $d_{\text{Roche}} = 2.4R$ this is "Roche limit":

• for  $d > d_{\mathsf{Roche}}$ : orbiter bound by self-gravity

• for  $d < d_{\text{Roche}}$ : orbiter torn apart by tides *Q: implications for rings?* 

### **Roche Limit and Rings**

Saturn: rings lie inside Roche limit, moons lie outside  $\rightarrow$  are rings "protomoon" that never coalesced?  $\rightarrow$  more likely: captured moon

note: all Jovian planets have rings!

www: Jupiter rings (Voyager, IR)

note: we are inside the Roche limit for Earth! *Q: why don't we get ripped apart?*