Astro 210 Lecture 23 March 12, 2018

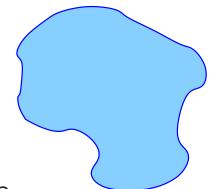
Announcements

- HW7 due online in PDF, Friday 5:00 pm
- Night Observing next week great weather for sure :¿ Campus Observatory. Monday through Thursday 7–9pm bring report form available on Moodle take and submit selfie while there

Theory of Solar System Origin: Protosolar Nebula

stars born in cold gas & dust clumps: molecular clouds
Q: what's dust, in astro context?
www: HST Eagle Nebula

Initial protosolar material a small parcel of larger cloud

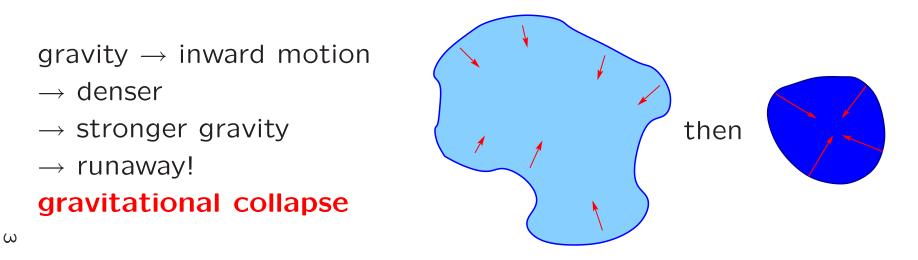

- cold gas & dust
- **spinning**: net angular momentum $\neq 0$ *Q*: why is $\vec{L} \neq 0$ a reasonable assumption?

First: imagine a cold cloud with *zero* spin i.e., *zero* angular momentum

- *Q:* forces on particles in cloud?
- Q: response of particles to these forces?

Ν

Q: why is coldness important for this to work?

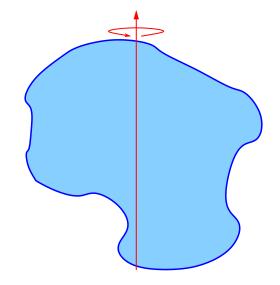

Gravitational Collapse

ignoring spin:

particles in cold cloud feel forces of

- gravity
- thermal pressure

but if cloud is *cold*: T low, pressure $P = \rho kT/m_{\text{particle}}$ small \rightarrow *only important force is gravity*



Q: why doesn't collapse continue until all matter \rightarrow point?

iClicker Poll: Contraction of a Spinning Swarm

Consider a swarm of particles, spinning around an axis Which is easier?

- A moving a particle *parallel* to spin ↓ toward midplane
- B moving a particle *perpendicular* to spin
 - $\leftarrow \text{ toward spin axis}$
- C bo
 - both motions equally easy

Nebular Collapse: Birth of Sun and Disk

in gravitational collapse: most matter \rightarrow central "proto-Sun"

but real pre-stellar clouds are clumpy parts of larger nebulae

- \rightarrow turbulent motions
- \rightarrow clumps have random but nonzero spins: $\vec{L}_{init} \neq 0$

with L > 0: collapse is not spherical

angular momentum "centrifugal barrier" resists motion toward spin axis

but not along spin axis

- \Rightarrow collapse easier along axis
- \Rightarrow protoplanetary disk

then

С

Q: consequences?

Disks Everywhere

disk formation is inevitable consequence of

- gravitational collapse
- with nonzero angular momentum

Twitter version:

Gravitational Collapse + Angular Momentum = Disks

Origin of

- spin of Sun
- disk = planet raw materials \rightarrow all move in same direction
- ecliptic plane: traces original disk plane
- planet ingredients nearly coplanar: planet orbits nearly coplanar

σ

Protoplanetary Disk

protosolar material with highest angular momentum "spared" from going into Sun \rightarrow remains as orbiting disk disk ingredients: mostly H and He gas with "sprinkle" (~ 2% by mass) of microscopic dust disk motion: feels gravity of proto-Sun \rightarrow moves in Keplerian orbits

non-circular velocity components $\rightarrow 0$

Q: why?

due to T drop with distance R from Sun: gas ρ , matter state (presence of ices) varies with R \neg Q: how? what physical effects important for ice formation?

disk velocities: matter interactions occur

with non-circular (i.e., radial) velocity components

- i.e., elliptical radial motions lead to collisions/heating: friction
- frictional drag forces drive radial motions to zero
- protosolar disk circularized \rightarrow low-eccentricity planet orbits

temperature gradients and disk structure

hotter near (proto)Sun, cooler farther away

 higher gas presser closer: gas disk "puffier" nearby what about solids? dust, ice?

key: condensation gas \rightarrow solid

- rocks, metals $T_{\rm cond} \sim 1000 2000$ K high!
- ice: $T_{\text{cond}} \sim 100 200 \text{ K low!}$

00

Q: so what does this mean for what kinds of solids form where?

The Snow Line

water/ice "snow" line at $R_{snow} \sim 3$ AU: Inner/Outer boundary!

- inside R_{snow}: only dust (rocky material) can exist as a solid (no ices!): limited raw material → small, rocky planets formed there
- outside R_{snow}: lighter elements (water, CO₂)
 can also exist as a solid (along with dust)
 → more raw material available → larger protoplanets

^o origin of Jovian/terrestrial composition differences!

Assembling the Planets: Challenges

Goal of Solar Nebula Theory:

- start with smooth, gas-dominated protosolar disk smoothly laced with with microscopic dust/ices
- explain physically-motivated steps leading to most of mass in planets, small remainder in debris and no remaining interplanetary gas
- Q: how can small dust/ice particles interact? Q: how would the particles clump and grow?

Growing Planets in the Protosolar Nebula: Gravity

gravity \rightarrow everything attracts everything else

- advantages: "reaches out" over space democratic: affects gas and solids
- disadvantage: at the beginning, disk smooth, circular most gravitational forces due to Sun no large objects yet to pull in neighboring material
- \rightarrow gravity *is* crucial, *after* large objects exist
- \rightarrow but must first build objects over size ''threshold''

 $_{\Box}$ Q: how can we do this with the ingredients at hand?

Growing Planets in the Protosolar Nebula: Sticky Rocks

collisions: dust particles tiny but numerous collide with each other as cloud collapses

high-velocity collisions e.g., from head-on impacts relative speed $v_{rel} \sim v_{orbit}$ violent! release large energy \rightarrow can destroy dust negative progress!

Luckily: as disk circularizes, gas density grows frictional drag forces strong: dust velocities \rightarrow alignment

low-velocity collisions $v_{rel} \ll v_{orbit}$ – gentle! *solid particles stick!* \rightarrow make fewer, larger particles only effective in solids (dust/ice): not gas doesn't "reach out"-requires particles to touch initially dust/ice particles small-hard to "find" each other

 \rightarrow slow acting: collisional effects set planet formation time

12

Protosolar Choreography

Phase I: Collisional solid particles (dust/ice) collide, stick → small solid bodies: "planetesimals" (like asteroids/comets)

gas as yet unaffected but acts as frictional drag on non-circular planetesimal motion

collisional processes continue until planetesimals massive enough \rightarrow gravity takes over

Phase II: Gravitational

big planetesimals attract small \rightarrow accumulate mass

- \rightarrow even stronger gravitational sources
- "the rich get richer"
- \rightarrow fewer & larger objects: "protoplanets"

collisions \rightarrow spin tilts, craters, the Moon!

Q: once planetesimals/protoplanets gravitate effectively, how does the affect the gas in the disk?

```
Outer Solar System (beyond snow line):
when core \sim 10 M_{\rm Earth}
gravity attracts, holds H, He gas
mass grows even more rapidly
```

Inner Solar System (inside snow line) smaller cores (no ices), higher $T \rightarrow$ can't hold H, He masses remain small

leftover planetesimals:

- rocky: asteroid belt
 Jupiter's gravity prevents planet formation
- icy: Kuiper belt, some ejected to Oort cloud
- as proto-Sun brightens: remaining interplanetary gas heats \rightarrow if not captured by giant planets, then driven out of SS

Theory of Solar System Origin: Executive Summary

stars born in cold gas & dust clumps: molecular clouds "gravitational collapse": runaway contraction

angular momentum: centrifugal barrier to collapse most matter \rightarrow proto-Sun high-angular momentum matter: protoplanetary disk around sun

gas ρ , matter state (presence of ices) change with R water/ice "snow" line at $R_{snow} \sim 3$ AU: Inner/Outer planet boundary!

Testing Solar System Origin

until recently, Solar Nebula theory had only one system to explain: us!

Now: Major new info on planet existence, birth around other stars

Q: what questions can only be answered by looking elsewhere?

Q: what questions can't be answered by looking elsewhere?

Q: what observable predictions does Solar Nebula theory make for young stars, mature planet-bearing stars?

Testing Solar Nebula Theory

Now seeing planets, planet formation around other stars Solar Nebula theory should work generally

 \rightarrow should apply to these systems too

...though some details might vary Q: why?

General Predictions of Solar Nebula Theory

In forming stars (protostars):

- 1. young protostars have gas disk
- 2. older protostars have planetesimal disk

In fully-formed star and planet systems:

- 1. small planets near star
- 2. massive planets farther away
- 3. orbits nearly circular

Problem: solar nebula theory built to explain

one data point (SS)! \rightarrow is the model "fine-tuned"?

18