Astro 210 Lecture 24 March 14, 2018

Announcements

- HW7 due online in PDF, Friday 5:00 pm
- Office hours: instructor 2:00-3:00 pm today TA: 3:30-4:30 pm tomorrow (yay!)
- Night Observing this week
 Campus Observatory. Tonight, tomorrow 8–10 pm
 note later times–solstice approaches! bring report form available on Moodle
 take and submit selfie while there

 \vdash

Theory of Solar System Origin: Executive Summary

stars born in cold gas & dust clumps: molecular clouds "gravitational collapse": runaway contraction

angular momentum: centrifugal barrier to collapse most matter \rightarrow proto-Sun high-angular momentum matter: protoplanetary disk around sun

gas ρ , matter state (presence of ices) change with R water/ice "snow" line at $R_{snow} \sim 3$ AU: Inner/Outer planet boundary!

Disk Gaps and Planets

As proptoplanets/planets arise in a disk their gravitation influence can clear out disk material in the disk annulus around the planet's orbit radius

so the protosolar nebular theory predict: a protoplanet/planet can create a gap in the disk

Note: small "shepherd" moons maintain gaps in Saturn's rings!

Q: what observable predictions does Solar Nebula theory make for young stars, mature planet-bearing stars?

ŝ

Testing Solar Nebula Theory

This is a special time!

Now seeing planets, planet formation around other stars

Solar Nebula theory should work generally \rightarrow should apply to these systems too ...though some details might vary Q: why?

General Predictions of Solar Nebula Theory

In forming stars (protostars):

- 1. young protostars have gas disk
- 2. older protostars have planetesimal disk
- 3. protoplanets can open gaps in disks

In fully-formed star and planet systems:

- 1. small planets near star
- 2. massive planets farther away
- 3. orbits nearly circular
- 4. orbit planes near stellar equator

Problem: solar nebula theory built to explain one data point (SS)! \rightarrow is the model "fine-tuned"?

σ

iClicker Twofer: Bets on Planet Formation

Vote your conscience!

Which prediction seem most solid to you?

- young protostars have gas disk
- 3 older protostars have planetesimal disk
- C small planets near star
 - > massive planets farther away
- E planet orbits nearly circular

In same list: which prediction seems least solid?

Test I: Young Stars

evidence from direct imaging:

50% - 100% of youngest stars surrounded by gas disk disks are common and perhaps unavoidable!

- www: Orion HST montage
- www: protoplanetary disks in Orion
- www: Orion disks set of 4
- www: Orion disks side view (really disks)

disks thick, blocks light

- \rightarrow enough material to make planets
- \rightarrow agrees with Solar Nebula theory!

 \checkmark evidence for disk formation! Orion objects: "proplyds" = protoplanetary disks

Dusty Disks

Some older protostars and fully-formed have spectrum that has two peaks \rightarrow two temperatures

- optical emission from the hot surface of star, and
- infrared emission from dust in disk!

Recently: can *image* the disks in the infrared warm dust: small (mm-sized) particles heated by star \rightarrow thermal IR

- www: eta Pic disk w/star
- www: ALMA: HL Tau, TW Hyd

ALMA in Chile is most powerful mm-wave telescope has revolutionized study of planet formation

- ∞
- disks seen with multiple gaps!
- disks seen in binary proptostars (each star has disk)

Solar Nebula Scorecard: Midterm Grades

General Predictions of Solar Nebula Theory

In forming stars (protostars):

- 1. young protostars have gas disk? check!
- 2. older protostars and fully formed stars have particle-bearing disk? **check!**
- 3. gaps found in some disks? check!

Solar Nebula Theory status: **Woo hoo!** so far so good! theory works up through disk formation how about planets themselves?

recall Solar Nebula predictions:

- giant planets far from stars
- rocky planets close in
- orbits nearly circular
- orbit planes near stellar equator

9

Test II: Exoplanets

Exoplanets = extra-solar planets = planets around other stars \star have been sought for centuries!

- ★ first positive, definitive detection: 1994 (around dead star)
- ★ first detection around normal star: 1995

What took so long? Exoplanet detection is a huge technical challenge Q: Why?

Q: possible workarounds?

Challenges for Planet Hunters

Can't 'just look'' – glare!
feeble light from planet drowned out by star flux
→ need a more clever workaround

Several detection techniques have been proposed three of these have already borne planetary fruit!

Successful strategies thus far involve:

- look for planet(s) effect on host star
- get lucky
- both of the above

 $\begin{array}{c} 1\\ 1\end{array}$

Planet Effects on Host Stars: Reflex Motion

recall Newton III: since star exerts gravity force on planet planet *must* exert *same* force on star!

- both must accelerate! the star moves ("reflex motion") ...but $a = F/m \rightarrow a_{\star} \ll a_{planet}$
- both stars and planet orbit fixed "center of mass"

thus:

- the star moves too!
- what remains fixed is the center of mass a point on the line connecting the star and planet

consider two objects of equal masses $m_1 = m_2$

 $\stackrel{!}{\scriptstyle N}$ Q: where is center of mass?

Q: how do distances r_1, r_2 to COM compare?

Center of Mass Reminder

Newton II: $a \propto F/m$ + Newton III: $F_{pon\star} = -F_{\star on p}$ $\Rightarrow F$ magnitude same, heavier object accelerated less \Rightarrow star moves slower, nearer to COM

```
• distances to center of mass:

total star-planet distance: r_{\star} + r_{p} = a

and m_{\star}r_{\star} = m_{p}r_{p}

so: r_{\star}/r_{p} = m_{p}/m_{\star} \ll 1

\Rightarrow and so v_{\star} \ll v_{p} but \neq 0!
```

How to use this?

13

- in practice, can't track star orbit path too small on sky
- but can look for "wobble" in star speed 1995: detection!

Planet Detection by Good Luck: Transits

if very lucky, planet orbit plane seen edge-on
so planet sometimes passes in front of star
★ causes partial eclipse of host star!
★ star dimming small but observable

Strategy: monitor light from candidate stars look for brightness changes as planet crosses ("transits") star's disk

Q: What is expected "light curve" of flux F(t) vs time t? Q: How to verify signal was due to a planet?