Astro 210 Lecture 27 March 27, 2018

Announcements

- good news: no new homework this week
- bad news: Hour Exam 2 this Friday
 March 30, in class, info posted on Moodle
- Night Observing one last chance after break first clear night will be final opportunity due date extended to March 30

Solar Energy Output: Luminosity

solar power output = luminosity: measured from apparent brightness = flux

$$F = \frac{L}{4\pi r^2}$$
 (1)
= 1370 W/m² at $r = 1$ AU (2)
 $\Rightarrow L_{\odot} = 4\pi r^2 F = 3.85 \times 10^{26}$ W

at sun surface

$$F_{\text{surf}} = L_{\odot}/4\pi R_{\odot}^2 = 6.3 \times 10^7 \text{ W/m}^2$$

The Facts of Life for the Sun

Fact: the Sun constantly radiates energy and at a huge rate! $dE/dt = L_{\odot} = 4 \times 10^{26}$ Watts!

Fact: the Sun has a finite $(\neq \infty)$ mass and thus a finite fuel supply (whatever that fuel may be)

Fact: Energy is conserved no free lunch!

Q: therefore?

How Does the Sun Shine?

The Sun radiates: shines from thermal radiation

- recall: surface flux $F_{\text{surf},\odot} = \sigma T_{\text{surf},\odot}^4 = 60 \text{ MWatt/m}^2$
- total power output = rate of energy emission = luminosity

$$L_{\odot} = 4\pi R_1^2 \text{ AU} F_{\odot}(1 \text{ AU}) = 3.85 \times 10^{26} \text{ Watts}$$
 (3)

- \rightarrow the Sun is a 4 \times 10²⁶-Watt lightbulb
- But also: the Sun has *constant* temperature, luminosity (over human timescales \gtrsim centuries)
- Q: how is the Sun unlike a cup of coffee?

The Sun is Not a Cup of Coffee

Coffee Thermodynamics

Demo: cup of coffee: cools themodynamic lesson:

- left alone, hot coffee cools (surprise!)
 - → energy radiated, not replaced
- to keep your double-shot soy latte from cooling need Mr. Coffee machine—energy (heat) source

Contrast with the Sun

- surface T_{\odot} constant over human lifetimes but energy *is* radiated, at enormous rate
- ergo: something must replace the lost energy
- ▶ What is solar heat source?
 - → a mystery in Astronomy until the 20th century

Q: possible energy/heat sources which Sun taps?

Q: how to test/compare which are important?

Energy Conservation and the Sun

recall: power is energy flow rate L = dE/dt

assume:

- Sun always emits energy at today's rate (L constant)
- radiation lasts for time τ_{\odot} = "lifetime" of Sun Q: what is a minimum value for τ_{\odot} ?

energy output over Sun's liftime:

$$E_{\mathsf{lost}} = L \tau$$

Energy conservation:

solar energy supply = lifelong energy output

Sorting Solar Energy Sources

The game:

- guess energy sources in the Sun (and stars!)
- compute/estimate supply ("battery") for each candidate solar energy "reservoir"
- assume Sun has some way to "tap" each source
 - → convert energy to heat (thermal atom motion)
 - \rightarrow keep T_{surf} hot, replenish radiated energy
- then see how long each source could light up the Sun

Q: Energy sources?

Q: how long do they need to last?

Solar Batteries: Required Lifetime

we found from radioactive dating of meteorites: the solar system is very old: age $t_{\rm SS} = 4.55 \times 10^9 \ yr$ Sun's present age essentially the same:

 $t_{\odot,\text{now}} = t_{\text{SS}} = 4.55$ billion years

total energy output over this time is huuuge!

→ required huge energy reservoir

in other words: important solar energy source(s) \equiv long-lived: $au_{\text{source}} = E_{\text{res}}/L_{\odot} = au_{\odot} > t_{\odot,\text{now}} \approx 5 \text{ billion yr}$

Q: possible sources-not just right answer, but any energy reservoirs?

iClicker Poll: Rank the Energy Sources

Vote your conscience!

Of the proposed solar energy reservoirs

Which one is the largest, i.e., can power the Sun longest?

Which one is the smallest?

Possible Solar Energy Sources

Gravity

if Sun contracts \rightarrow release grav. P.E.

estimate gravitational energy "reservoir" approximate Sun as uniform sphere: $PE_{\rm grav} = -3/5 \ GM_{\odot}^2/R_{\odot} = 2 \times 10^{41} \ {\rm Joules}$ $\rightarrow E_{\text{contract}} = -PE$

if grav energy fuels the Sun, lasts for $\tau_{\text{grav}} = E_{\text{contract}}/L = 5 \times 10^{14} \text{ sec} = 17 \text{ Myr}$ but: Sun, SS age is 4.6 billion yrs \rightarrow not enough!

• Chemical Energy: binding energy of atom/molecules if entire Sun interior made of TNT (!) burning \rightarrow break bonds \rightarrow release chemical energy \rightarrow heat but: $\tau_{\text{chem}} = 20,000$ years! yikes!

Rotational Energy

Sun spins, has rotational energy (rotational equivalent of kinetic energy)

$$E_{\text{rot}} = \frac{1}{2} I \omega^2 \approx \frac{1}{5} M_{\odot} (\omega_{\odot} R_{\odot})^2$$
 (4)

if made Sun spin down (somehow) convert spin energy to heat

but: $\tau_{\rm rot} \approx 400 \text{ years!!}$

Lesson: Sun requires enormous energy source

The **only** viable candidate:

Nuclear Energy

The Sun is a vast nuclear reactor in hot core, hydrogen converted to helium by nuclear reactions

Note: needed *quantitative* estimates of burn times to answer *qualitative* question "What powers the Sun?"

→ the power of (and necessity of) number crunching!

Nuclear Fusion in the Sun

The Sun is a nuclear reactor i.e., nuclear reactions occur inside the Sun change reactant nuclei into different product nuclei

- → elements transformed into other elements
- → cosmic alchemy!

Mechanism: high-energy/high-speed collisions between nuclei

$$nucleus_1 + nucleus_2 \rightarrow nucleus_3 + energy$$
 (5)

- nuke energy release → stellar power source
- lighter nuclei combine → heavier: fusion
- Q: why are high energies, speeds needed?
- Q: how do the nuclei get these energies & speeds?

In fact: many reactions can and do occur but a small handful are the most important

Key reactions occur in "chains"

- first step involves pre-existing solar ingredients (Q: namely?)
- input for each new step is output from previous step

$$p + p \rightarrow 2H + e^{+} + \nu$$

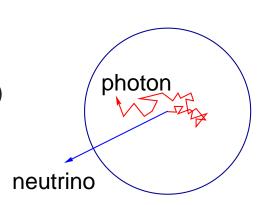
$$e^{-} + e^{+} \rightarrow \gamma + \gamma$$

$$^{2}\text{H} + p \rightarrow ^{3}\text{He} + \gamma$$

$$^{3}\text{He} + ^{3}\text{He} \rightarrow ^{4}\text{He} + 2p$$

Net effect:

$$4p + 2e^{-} \rightarrow \boxed{2n2p} = ^{4}\text{He} + \text{energy} + \dots$$


each "p-p reaction" creates:

- ²H=<u>np</u> "deuterium" "heavy hydrogen"
- e^+ "positron" antimatter: anti-electron! then $e^- + e^+ \rightarrow \gamma + \gamma$ energy!

annihilation

• ν "neutrino"

very low-mass $(m_{\nu} \ll m_e)$ particle only created in nuclear reactions ("weak" decays) very weakly interacting particle once born, go thru Sun, Earth, your body but almost never interact

Hour Exam 2 Review