Astro 210 Lecture 32 April 11, 2018

Announcements:

- HW9 due online in PDF, Friday 5:00 pm
- Office hours: instructor 2:00–3:00 pm today TA 3:30–4:30 tomorrow
- Solar Observing continues today and tomorrow 11:15 am to 2:45 pm Campus Observatory allow 20-30 min. bring worksheet. take selfie

probably one final date next week (first clear)

but go now if you possibly can

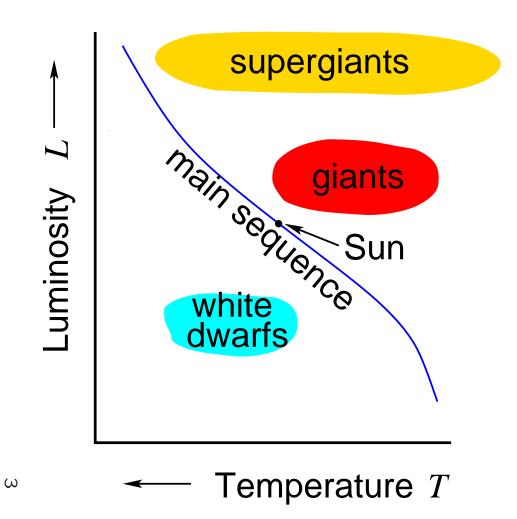
 \vdash

Stellar Evolution: the Story thus Far

Last time we saw:

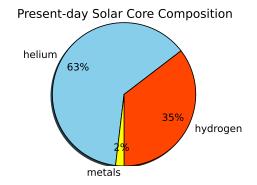
the Sun is a Main Sequence star

Q: what does this mean observationally?


Q: what does this tell about the HR diagram Main Sequence?

Q: what's the (main) difference between stars at different points along the Main Sequence?

Q: what are the other main features of the H-R diagram? Q: what do you expect is their origin?


 $_{N}$ Q: what is the effect of nuclear reactions on the Sun's core?

HR Diagram: All Stars

The Sun: Main Sequence Evolution

on MS: in solar core: $H \rightarrow He$ "burning" \rightarrow over time: H "fuel" \rightarrow He "ash" \rightarrow fuel supply goes down e.g., today, Sun's core < 50% H!

how does core respond to H depletion? $4p + 2e \rightarrow {}^{4}\text{He}$ means *fewer but heavier particles*

consequences:

- pressure $P = nkT = \frac{\rho}{\mu}kT$: larger avg particle mass $\mu \rightarrow$ pressure drop
- but Sun interior must still support Sun's weight
 ⇒ pressure must stay same
- $_{\triangleright}$ Q: how would Sun respond?
 - Q: consequences for photon mean free path, escape?

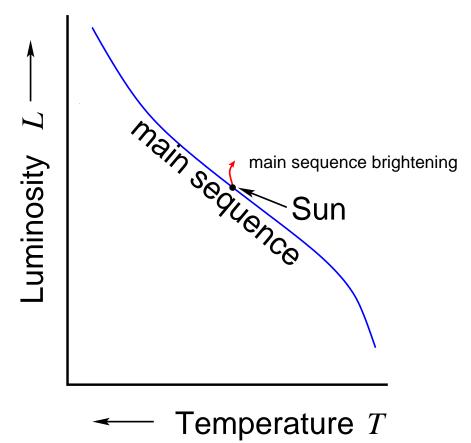
main sequence $4p + 2e \rightarrow {}^{4}$ He means fewer but heavier particles so average particle mass μ increases

but must maintain pressure support against gravity

• $P = \frac{\rho}{\mu}T$: with higher μ compensate with *higher core* T

alsp: fewer particles \rightarrow fewer scatterers photons have longer mean free path

- \rightarrow light can escape more easily, faster
- \rightarrow luminosity goes *up*!

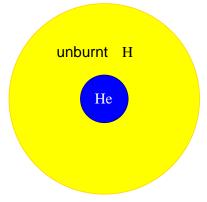

main sequence brightening

Q: affect on HR diagram?

СЛ

Main Sequence Brightening on HR Diagram

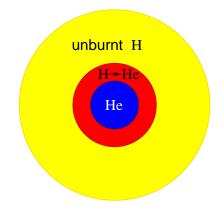
Today: sun $\sim 50\%$ brighter than at birth!


σ

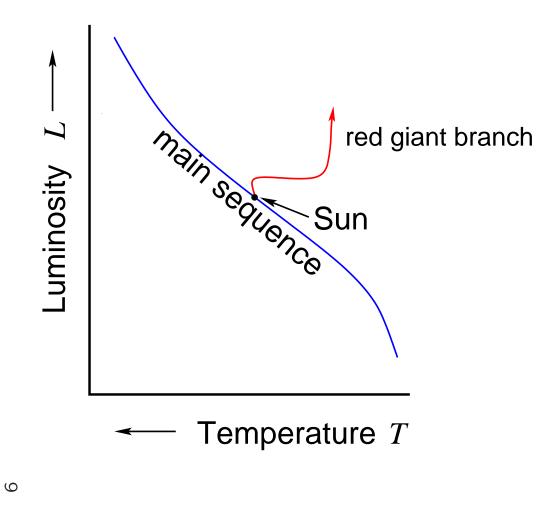
iClicker Poll: A Helium-Core Sun

What happens when *all* core H converted to He?

- B the Sun's core contracts
- C the Sun begins to burn helium
- D
- the Sun ignites unburnt hydrogen outside core


$1M_{\odot}$ Star: Leaving Main Sequence

after core H exhausted


- core cools → loses pressure support core can't maintain hydrostatic equilibrium
- core contracts!
- H material overlying core also contracts, heats new fuel, can begin to burn!
 - \rightarrow H burning in ''shell'' around core
- $\rightarrow L$ increase!
- outer layers ("envelope") of star expands
 - \rightarrow cools: $T\downarrow$

red giant

∞ *Q*: *HR* diagram appearance?

HR Diagram: Red Giant Phase

Q: how to test?

Late Stellar Evolution: Globular Clusters

★ some star clusters are gravitationally bound over long timescales stellar orbits come to equilibrium in cluster gravitational field → spherical ball of stars observe as globular cluster www: examples

long times required to achieve equilibrium globular clusters are *old stars*

Q: globular cluster HR diagram prediction?

www: HR diagram

HR Diagram: Comparing Burning Phases

Note: *in fair sample of stars: main sequence makes up about 90% of the population red giants* make up most of the remaining 10%

www: HR diagram

Q: what does this tell us? hint–imagine snapshot of fair sample of people for example, attendance at White Sox/Cubs

HR Diagram and Stellar Life Stages

Main Sequence

- \approx 90% of stars
- hydrogen burning: $4p \rightarrow {}^{4}He$

Red Giants

- $\approx 10\%$ of stars
- helium burning: $3^4 He \rightarrow {}^{12}C$
- if stars born at roughly constant rate most stars will be seen in longest life phase \Rightarrow main sequence phase longest, most of star life red giant phase $\approx 1/10$ as long

12

Q: what happens to inert He core?

The Dense Core

inert He core: no heat source, so *cools* gravity force unbalanced \rightarrow *contracts*

core \rightarrow high density ρ

contraction slowed by Pauli exclusion principle \rightarrow quantum law: can't put 2e's in same state

at high densities:

quantum "degeneracy" pressure resists compression like in ordinary solids, but more extreme

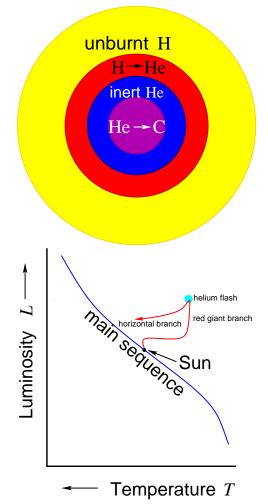
in high-density gas/solid:

Core Burning Reloaded: Helium Flash

red giant structure: degenerate core, H-burning shell, envelope

core heats \rightarrow He fusion ignites

```
normal gas: T \uparrow, P \uparrow \rightarrow expand \rightarrow cool
degenerate gas: T \uparrow, P const: no exp, cool!
\rightarrow reaction speedup \rightarrow explosion!
[helium flash] (few min)
```

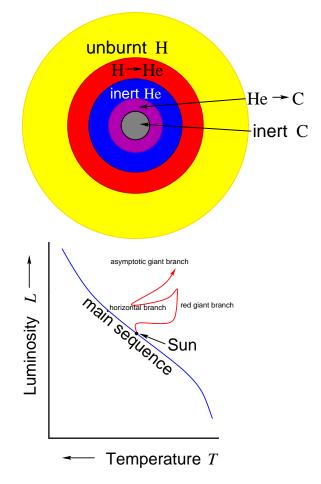

but note: flash occurs deep in star \rightarrow hidden by envelope!

Cosmic Recycling: Core Helium Burning

after flash: core He burning ⁴He +⁴He + ⁴He \rightarrow ¹²C + γ ash \rightarrow fuel! cosmic recycling!

phase similar to H-burning (main seq) but hotter, faster burn "horizontal branch" on HR diagram

15


Q: what happens when core He exhausted?

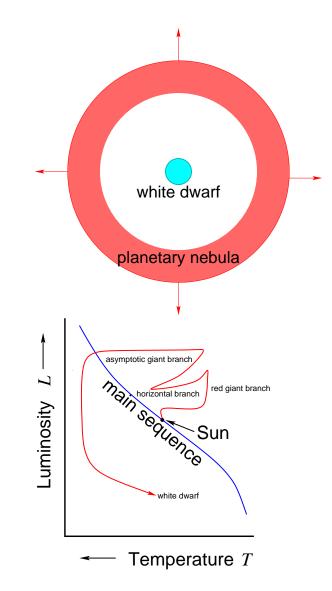
$1M_{\odot}$ Star: Death Throes

ultimately, core runs out of ⁴He now 2 shells: H-burning and He- burning similar situation to red giant phase star again expands toward RG region of HR asymptotic giant branch

2-shell burning unstable! \rightarrow thermal pulses (every 10³ yrs, for a few yrs) expel mass in "superwind"

[™] *Q: what should this lead to? Q: what would it look like?*

$1M_{\odot}$ Star: The End


AGB phase: dense, inert C+O core surrounded by unstable shell burning

wind \rightarrow hot ejected gas \rightarrow planetary nebula

www: HST planetary nebulae

star coreexposed! → cools rapidly
a bare "cinder," supported by
degeneracy pressure (electrons)

- very hot, but
- very compact \rightarrow small \Rightarrow becomes white dwarf

