Astro 210 Lecture 35 April 18, 2018

Announcements:

- HW10 due Friday 5:00 pm online
- Office hours: instructor 2:00–3:00 pm today TA 3:30–4:30 tomorrow
- Hour Exam 2 grades posted. Most did well. Bravo!

Massive Stars: James Dean of the Cosmos

- *live fast*: high mass \rightarrow strong gravity, high T rapidly pass through nuke burning stages until iron core
- *die young*: in spectacular supernova explosion
- *leave a beautiful corpse*: high-velocity, superheated, metal-rich gas ejected, plus compact object at center

Q: what do astronomers mean by "metal" rich?

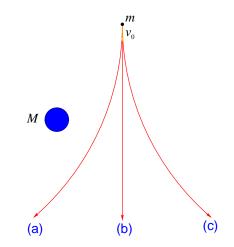
compact object: sometimes a **neutron star** some of which are observed as pulsars *Q: how? what is detected?*

Ν

iClicker Polls: Gravitation Warmup Twofer

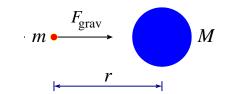
Recall your (Newtonian) gravitation

a test particle, mass m, *launched from "infinity*" with *speed* $v_0 > 0$ passes gravitating mass MWhat is the path of the particle?


deflected towards M

no deflection: straight line

deflected away from M


ω

Same question, but for *massless* test particle, m = 0

Gravitation Revisited

Newton gravity force law

$$F_{\rm grav} = \frac{GMm}{r^2}$$

implies that if M moves and thus r changes:

→ gravity force changes instantaneously over all space! "signal" of motion instantaneously transmitted throughout the universe

Einstein sez: *this is totally illegal! an unmitigated disaster!* no signal–including gravity–can move faster than *c*! violates basic principles of special relativity

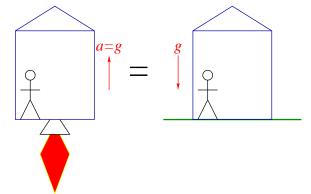
Einstein 1905: Special Relativity

- \bullet rewrote dynamics to include motions with speeds near c
- but did not include gravity

4

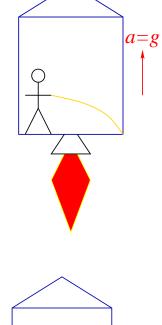
Gravity and Acceleration are One

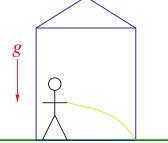
Einstein 1905-1915: struggled to reconcile *special relativity* and *gravity*


Key step:

Einstein's Equivalence Principle:

in a closed room


no experiment can distinguish gravity-free acceleration vs gravity and no acceleration


- *Q:* explain ball weight–Earth's surface vs accelerating rocket?
- *Q:* explain ball drop–Earth's surface vs accelerating rocket?
- *Q:* what about horizontal ball toss?
- σ Q: what about horizontal light beam?

Gravity Bends Light

* entire light path bent (in fact, a parabola!)

σ

Q: what if shine light from basement to attic?

Gravitational Redshifting

Also: in accelerating spaceship:

 \star shine light from basement to attic

spacecraft & attic speed increases during light travel

 \rightarrow attic observer seed light <code>redshifted</code>

similarly, basement observer sees attic light *blueshifted*

Gravitational Redshift

And there's more:

redshift = decrease in light frequency f

but f = 1/P, light wave oscillation period

so redshift $\rightarrow P$ increases

 \neg but light oscillations are like clock ticking, so...

Gravitational Time Dilation

clocks in basement appear to run slow
 when viewed from attic!
 and attic clocks appear fast when viewed from basement!

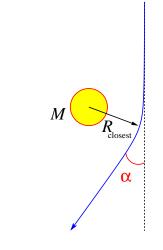
in fact, attic clocks faster by $\Delta t = t_{\text{attic}} - t_{\text{basement}} = g\Delta h/c^2$

time "warping" due to gravity:
"gravitational time dilation"
gravity influences "flow" of time!

00

Q: how to test these effects in real world?

Light Bending: The Sun


In principle: all gravitating objects bend light including you, me, the earth...In practice: need strong gravity source to create effect large enough to observe

Einstein (1915) devised first test: the Sun

• Sun's gravity deflects starlight rays

Ø

• the stronger the gravity along the path the bigger the deflection bending angle $\alpha = 4GM_{\odot}/R_{\rm closest}c^2$

biggest effect for starlight "grazing" Sun edge: $R_{closest} = R_{\odot}$ Q: why is this technically challenging to see? Q: how to get around the problem?

1919 Eclipse: Give it up for Big Al!

Problem: Sun's glare obscures surrounding starlight Solution: block glare with eclipse!

1919: total solar eclipse in Southern hemisphere expedition led by Sir Arthur Eddington www: expedition results paper to Royal Society * starlight bent! Woo hoo! s * relativistic gravity confirmed! * Einstein an instant celebrity www: NY Times announcement Now tested many times, and very accurately seen in clusters of Galaxies www: HST gravitational lens Abell 2218

Sun

star

10

• all starlight bending experiments confirm Einstein!

General Relativity

Einstein's gravity: General Relativity relativity generalized to include fast motion *and* gravity

Newton: matter causes force (gravity) → particles follow curved lines in "flat" (Euclidean geometry) space

Einstein: bold leap, rejected Newton
matter causes spacetime to be "curved"
→ particles follow straight lines ("geodesics")
in curved space

space and time dynamic
 not fixed once and for all

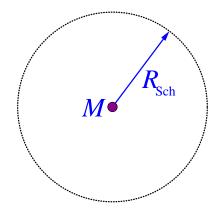
Black Holes

Laplace (1790's) recall: escape velocity $v_{esc} = \sqrt{2GM/R}$ HW 3: What if star has M, R with $2GM/c^2R > 1$? then $v_{esc} > c$! light cannot escape! \rightarrow black hole

Wrong argument (Newtonian gravitation) ...but right answer!

```
in death of M > 30 M_{\odot}^*: gravity wins collapse unstoppable black hole formed \Rightarrow inevitable part of star formation
```

12


*Exact "threshold mass" for SN \rightarrow BH uncertain

Black Hole Properties

any object of any mass M can (in principle) become a black hole!

size: Schwarzschild radius

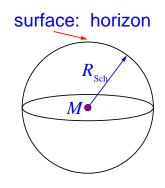
$$R_{\rm Sch} = \frac{2GM}{c^2}$$

radius also provides BH "recipe":

- crush object M smaller than $R_{Sch} \rightarrow get BH!$
- example: for mass of Sun $R_{\rm Sch} = 2GM_{\odot}/c^2 = 3.0$ km but actual $R_{\odot} = 7 \times 10^6$ km \rightarrow the Sun is not a black hole! (whew!)
- $\stackrel{t}{\omega}$ for mass of Earth: $R_{\rm Sch} \approx 1$ cm!

The Black Hole Horizon

Why call R_{Sch} the BH radius? nothing is there!


True, but: R_{Sch} marks "point of no return" **horizon**: surface enclosing the BH i.e., horizon is surface of sphere w/ radius R_{Sch}

horizon is one-way "membrane" once inside $r \leq R_{Sch}$ nothing can escape...even light! cosmic roach motel!

Hence:

no light escapes \rightarrow black

but nothing else moves as fast \rightarrow nothing else escapes \rightarrow hole

Life Near a Black Hole

Experiment: lower astronaut (Jodie) near R_{Sch} we are at mission control, far away ($r_{us} \gg R_{Sch}$) communicate w/ light signals

when viewing photons (or clock ticks) emitted at $r_{\rm em}$, observed at $r_{\rm obs}$ general rule:

$$\frac{\Delta t_{\rm obs}}{\Delta t_{\rm em}} = \frac{\lambda_{\rm obs}}{\lambda_{\rm em}} = \sqrt{\frac{1 - R_{\rm Sch}/r_{\rm obs}}{1 - R_{\rm Sch}/r_{\rm em}}} \tag{1}$$

What do we see?

obs=us: $r_{obs} \rightarrow \infty$; em=Jodie: $r_{em} > R_{Sch}$

• Jodie's watch: $\Delta t_{\rm obs}/\Delta t_{\rm em} = 1/\sqrt{1-R_{\rm Sch}/r_{\rm em}} > 1$

 $\rightarrow \Delta t_{\rm obs} > \Delta t_{\rm em}! \text{ appears to tick slow! time dilation!}$ • wavelengths: $\lambda_{\rm obs} > \lambda_{\rm em}! \text{ redshift!}$ *Q: and Jodie?*

$$\frac{\Delta t_{\rm obs}}{\Delta t_{\rm em}} = \frac{\lambda_{\rm obs}}{\lambda_{\rm em}} = \sqrt{\frac{1 - R_{\rm Sch}/r_{\rm obs}}{1 - R_{\rm Sch}/r_{\rm em}}}$$
(2)

What does Jodie see?

intuitively: expect inequalities to reverse...and they do obs=Jodie: $r_{obs} > R_{Sch}$; em=us: $r_{em} \rightarrow \infty$:

• our watches: $\Delta t_{\rm obs}/\Delta t_{\rm em} = \sqrt{1 - R_{\rm Sch}/r_{\rm em}} < 1$

 $\rightarrow \Delta t_{obs} < \Delta t_{em}!$ appear to tick fast!

• wavelengths: $\lambda_{obs} < \lambda_{em}!$ blueshift!

When Jodie returns:

then $r_{\rm em} = r_{\rm obs}$

- $\Delta t_{obs} = \Delta t_{em}$: her watch ticks at same rate as ours!
- but the *elapsed time* is shorter on her watch and so she is younger than her twin!

16