Astro 210 Lecture 38 April 25, 2018

Announcements:

- HW 11: The Final Frontier posted, due 5:00pm Friday
- Grades: we are catching up! keep checking Moodle

Galaxies: Sweet Home Milky Way

The Milky Way

www: MW mosaic

www: MW dust lane closeup

Milky Way to eye: irregular band of light

MW is band on 2-D sky - a *great circle* Q: what about 3-D space?

iClicker Poll: The Milky Way that Meets the Eye

Vote your conscience!

What's the main source of light in the naked-eye MW?

- A predominantly gas
- B predominantly stars
- c roughly equal mix

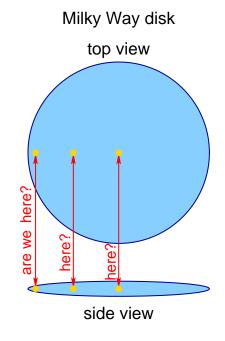
The Milky Way: Our Home Galaxy

Galileo's telescope showed: MW made of huge number of stars eye can't separate, light blends together

MW band: a great circle in 2-D sky \rightarrow 3-D **disk of stars**, with the Sun inside the disk note similarity with planar concentration of planets in SS

where are we in the disk: near middle or edge?

www: MW mosaic


on MW band in optical sky:

stars ≈ evenly distributed

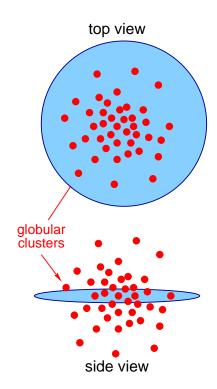
Q: simplest interpretation?

www: Herschel model (1700's)

Q: loophole in the argument?

Finding Our Place in the Milky Way

clue: dark strips in MW


dust: absorbs light → only see small part of MW disk

this fact only verified in 20th century

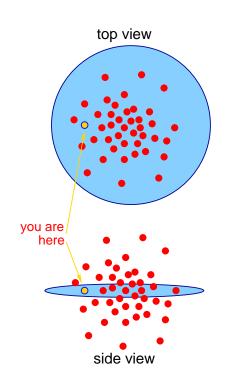
But if we can't see through disk: How to determine MW structure and size?

H. Shapley (1910's):
globular clusters of stars
most lie out of disk plane
→ we have unobscured view

o Q: how does GC sky pattern tell where we are?

We Are Off-Center

If we are at MW center:


→ see GC's evenly spread around the sky

If we are off-center:

- → see GC's more on one side of sky
- → that's Galactic "downtown"

www: observed GC sky distribution

* we are not MW center!

modern update:

dust obscures visible light, but not longer wavelengths dust "invisible" if $\lambda \gg$ dust size so infrared, radio telescopes can see all of MW will see: these confirm we are off-center

Revolution Revisited

Cosmologist Y. Berra: It's dej/'a vu all over again!

Copernican Revolution I (17th Century):

we're one typical planet among many not center of solar system

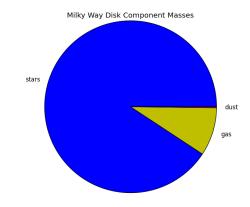
Copernican Revolution II (earth 20th Century):

we're one typical star among many not center of Milky Way Galaxy

... stay tuned for more...

Observed Milky Way Structure

I. Disk Components: most of luminous matter


www: IRAS full sky: dust. False color, Galactic coordinates

www: DIRBE near-IR image: cool stars

- 1. disk contains most Milky Way stars roughly $10^{11} = 100$ billion of them!!
- disk contains all MW gas

 (atomic, molecular, ionized)
 fuel for new stars:

 star formation occurs in disk

3. disk also contains all dust but total dust mass \approx 2% of gas mass

but total gas mass $\approx 10\%$ of stellar mass

Milky Way Disk Structure radius $R\sim 15,000$ pc = 15 kpc (kpc = kiloparsec = 1000 pc) thickness $h\sim 200$ pc at our location: thin!

- disk thickest in center, tapers off away from center and up from midplane
- disk shows evidence for spiral arms
 - \rightarrow we are spiral galaxy! (as in www: M104)

II. Milky Way Spherical Components

- 1. bulge at center (old stars, can see in DIRBE image) spherical distribution of stars
- 2. "halo" of old stars extends from central bulge
- 3. globular clusters

Milky Way Dynamics

in MW, all objects exert gravity on all others

- → everything accelerating
- \rightarrow everything is in motion

Q: how measure? complications?

Milky Way Rotation

measure speeds of stars, gas via Doppler effect complication: we are moving too

dis stars and gas orbit MW center disk stars: \sim circular orbit \rightarrow disk rotates! but disk stars don't spin like frisbee (i.e., a solid object) in time Sun goes around once stars closer to center go around more than once stars further out — less than once \rightarrow "differential rotation"

rotation curve: plot orbit speed $v_{circ}(R)$ vs orbit radius R

iClicker Poll: Rotation Curve Warmup-Solar System

rotation curve: orbit speed v vs orbit distance r from Sun

What's the rotation curve for solar system planets?

- A oribt speed v increases with increasing distance r
- $oldsymbol{\mathsf{B}} v$ roughly constant at all r
- v decreases with increasing r
- v variation is random with r

www: Solar System rotation curve Q: why is the result the way it is?

Milky Way Rotation Curve

www: MW rotation curve

data: $v \sim const$ beyond $R \sim$ 2 kpc

but recall: circular velocity $v_{\rm circ}=\sqrt{GM/R}$ use to get mass interior to R: $M(R)=v_{\rm circ}^2R/G$

so:

- 1. at $M(R_{\odot} = 8 \text{kpc}) \sim 8 \times 10^{10} M_{\odot}!$
- 2. if $v=v_{\rm circ}=const$ then $M\propto R$ $M(16{\rm kpc})=2M(8{\rm kpc})=1.6\times 10^{11}M_{\odot}$
- 3. once outside of all mass, $M(R)=M_{\rm tot}$, and $v_{\rm circ}\propto 1/\sqrt{R}$: not seen! mass grows even beyond where stars, gas stop
- \rightarrow infer large mass which doesn't glow Q: what does this imply? what's the alternative?

Dark Matter

MW mass estimate (rot curves): $M_{\rm MW} = 5 - 10 \times 10^{11} M_{\odot}$ total but stars & gas: $M_{\star} \simeq 10^{11} M_{\odot}$ \rightarrow only 10 - 20% of total! most of MW matter is dark

Milky Way mass mostly dark matter

What are possible dark matter forms? — Hints:

Alternative: serious problems with our theory of gravity! ...but this is General Relativity—works spectacularly well when we can test carefully

Possible Dark Matter Candidates

What is the DM? Unknown (to date). Guesses:

```
black holes neutron stars white dwarfs "failed stars" – "Jupiters," brown dwarfs hot \sim 10^6 \text{K} gas (emits X-rays, but not visible light) neutrinos exotic particles left over from big bang
```

iClicker Poll: Dark Matter

Vote your conscience!

Which seems the most likely dark matter candidate?

- A hot gas
- B black holes/white dwarfs/neutron stars
- C neutrinos
- D exotic particles left over from big bang

Dark Matter: Results to Date

Dark matter identity is still *unknown*⇒ one of the top questions in all of science!

But we do know what dark matter is not

- hot gas X ruled out
- black holes/white dwarfs/neutron stars X ruled out
- neutrinos X ruled out
- * exotic particles left over from big bang not ruled out
- $^{\bar{\omega}}$ The most exotic possibility is the only one left standing! more on this as we discuss cosmology...