Astro 210 Lecture 4 Jan 24, 2018

Announcements

• HW1 due 5:00 pm Friday

upload single pdf file on moodle

check pdf to see that it is legible!

can use scanner or scanning apps like Camscanner

- Office hours: Instructor today 2-3pm, or by appointment TA hours 3:30-4:30pm Thurs
- register your iClicker; link on course moodle
- if this is your first class: see me afterward!

 \vdash

Our dynamic sky: the story thus far

the stars

Q: Motion wrt^{*} horizon? Natural timescale(s)?

the Sun

Q: Motion wrt horizon? Motion wrt stars? Natural timescale(s)?

the Moon

Q: Motion wrt horizon? Motion wrt stars? Natural timescale(s)?

*wrt = texting abbreviation for: *with respect to*

Ν

Stellar, Solar, Lunar Motions Summarized

the stars

- \bullet wrt horizon: rise in east, set in west; period ≈ 1 day
- "fixed" stellar patterns on celestial sphere
- available sky depends on latitude (HW1) but nightly view changes over year Q: why?

the Sun

- wrt horizon: rise in east, set in west; Period $\approx 1~{\rm day}$ noon to noon period: solar day
- wrt celestial sphere: path = great circle = ecliptic
- noontime elevation changes, period year of seasons

the Moon

ω

- \bullet wrt horizon: rise in east, set in west; Period ≈ 1 day
- shows phases, period lunar month 29.5 days wrt celestial sphere: great circle, near ecliptic, period \approx month

Phases and Latitude

Note: lunar phase pattern depends on observer latitude i.e., which from hemisphere you look

all of the above discussion was for *northern* observers

Q: what aspects of the situation change for southern observers? *Q*: what aspects do not change

Lunar Phases: Southern Exposure

southern observers: "upside-down" relative to north
→ moon image same (illuminated vs dark portion identical)
but "upside-down"

unchanged:

- waxing or waning nature of phase (i.e., increasing or decreasing illumination)
- type of phase (crescent, gibbous, etc)

different:

СЛ

- southern observers see reversed moon right ↔ left relative to northern observers
- e.g., waxing crescent illuminated on *left* side waning gibbous illuminated on *right* side

For all homework, exam problems: assume *northern* observers on earth (and on the Moon!)

Eclipses

Full shadow = Sun *completely* blocked: **umbra** Partial shadow = Sun *partly* blocked: **penumbra**

www: lunar eclipses

note: can still see Moon even when totally in Earth's shadow! appears much dimmer, and red

σ

Q: what's going on? why the red color?

The Red Eclipsed Moon

note that *direct* sunlight is totally blocked

so light must be indirect, in fact:

scattered light from earth's atm.

red b/c blue is scattered more strongly, so only red is left in other words:

glow is from all the sunrises and sunsets on Earth!

moving to solar eclipses

Q: why do they occur?

Note: Earth larger than Moon

Q: what does this immediately imply for solar eclipses?

 \checkmark

Solar Eclipses

solar eclipse: observer in moon's shadow since Moon smaller than earth, whole earth cannot be in shadow in fact, only a small region, ~ 100 km, at a given time "eclipse path"

also: Moon's shadow fast! umbra movies up to $\sim 1~{\rm km/s}\approx 2000~{\rm mph}$

 ∞

Q: implications?

- only observers along narrow eclipse path fall in umbra and see totality
- eclipse duration brief: \leq 8min, usually shorter
- only some of remaining sun-side observers see penumbra = partial eclipse

lesson: Solar eclipses are brief, and dramatic if you want to see them, usually have to travel

Cosmic Coincidence

interesting coincidence: Moon and Sun have almost identical angular size and what's more: Moon's distance changes (not circular orbit) www: moon perigee/apogee comparison

together this means: two kinds of solar eclipses

- www: annular eclipse
- www: total eclipse

10

www: looking back on Earth's shadow

Note: there is *not* a solar or lunar eclipse every month!

iClicker Poll: Eclipses and Lunar Orbit

Eclipses do *not* occur most months

What does this imply about the Moon's 3-D motion around Earth?

- A Moon-Earth orbit not confined to a plane
- B Moon-Earth orbit is planar, but not in ecliptic (=Earth-Sun orbit plane)
- C Moon-Earth orbit is planar and is in ecliptic, but Moon orbit is in opposite direction as Earth-Sun orbit
- ^{\Box} D trick question! eclipse does occur monthly \rightarrow that's the new moon

if Moon's orbit plane around Earth were same as Earth's around the Sun (i.e., the ecliptic) then *would* have eclipses monthly

the fact that we *don't* means that the two orbits are *not* coplanar!

 \star moon's orbit plane slightly tilted w.r.t. ecliptic so moon is typically below or above ecliptic

iClicker Poll: Eclipse Frequency

Earth-Moon orbit plane *not coplanar* with Earth-Sun orbit (=ecliptic)

Therefore, how many times a year should be have eclipses?

- A 1 eclipse (of either kind) per year
- <mark>B</mark> 2

3

4

С

D

1ω

www: eclipse diagram

only eclipse when Moon orbit crosses ecliptic plane happens *twice* a year \rightarrow "season of eclipses"

geometrically: intersection of planes is a *line* and intersection of line with closed orbits is 2 points

Note: eclipse "season" last about \sim 1 month i.e., time window of alignment about equal to Moon orbit period \rightarrow can sometimes have two or three eclipses in same season

ABCs of Eclipses: Always Bee "C"eeing Eclipses

Eclipses are spectacular examples of astronomy intervening in our daily lives Total solar eclipses are deeply beautiful and for many, emotional

Astro-Tip: you must see ≥ 1 total solar eclipse!

Aug 21, 2017: Great American Eclipse

- Coast-to-Coast across United States
- possibly the most viewed eclipse in human history
- maximum duration of totality was in Southern Illinois: Makanda

www: 2017 Eclipse images and movies

Upcoming Eclipses–Mark Your Calendars!

Go! Bring friends and family, impress with your ASTR210 skills!

Solar				
Date	Туре	Where Visible		
15 Feb 2018	Partial	Antarctica, S. America		
2 Jul 2019	Total	Chile, Argentina		
26 Dec 2019	Annular	India, Sumatra, Borneo		
21 June 2020	Annular	south Asia, China		
24 Oct 20203	Annular	western US, central America		
8 Apr 2024	Total	Mexico, US, Canada		

Lunar				
Date	Туре	Where Visible		
31 Jan 2018	Total	Western US		
21 Jan 2019	Total	N. and S. America		

Planets

Known since ancient times: Mercury, Venus, Mars, Jupiter, Saturn

Discovered later, with telescopes: Uranus, Neptune, Pluto

daily motion: westward w.r.t. horizon i.e., .rise in east, set in west

w.r.t. fixed stars: always stay close to ecliptic usually move eastward www: SOHO LASCO planet movie but sometimes westward: "retrograde motion" www: retrograde motion of Mars 5 so motion not uniform in angular speed in fact, not uniform even when in "direct" (non-retro) motion retrograde motion not random in occurrence! key patterns observed:

- for each planet, retrograde onset is *periodic* with different periods for different planets
- retrograde occurrence *correlated* with position relative to Sun:

Mercury, Venus	Mars, Jupiter, Saturn (& others)
always stay close to sun on sky	can move freely along ecliptic
<i>never</i> seen opposite Sun	can be opposite sun
retro when in conjunction	retro when in opposition
(i.e., when closest to Sun on sky)	(i.e., opposite Sun on sky)

These Patterns Cry Out For Explanation

you may have noticed—I've heaped a lot of facts on you. Do you have to memorize them? Do *I* have them memorized? No! There's a simpler way of remembering.

 \rightarrow build a **model** of the solar system's geometry and dynamics organize, explain all of this data!

Science is built up with facts, as a house is with stones. But a collection of facts is no more a science than a heap of stones is a house. —Henri Poincaré

Crucial point:

when making model for motions of planets have to explain *all* observed features;

⁵ turns out the retrograde motion, in all its detail, gave people the hardest time...

Building a Scientific Model

Scientific Models must:

- explain observations
- predict future observations

The principle of science, the definition, almost, is the following: *The test of all knowledge is observation.* Experiment is the *sole judge* of scientific "truth."

The first principle is that you must not fool yourself—and you are the easiest person to fool.

—Richard Feynman