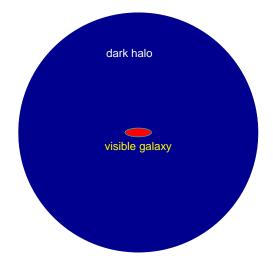
Astro 210 Lecture 40 April 30, 2018

Announcements:

- Congratulations! You are done with HW!
- Final Exam: May 7, 8:00 am 11:00 am info on Moodle
- Solar Observing: alternative exercise posted for those unable to attend
- ⊢ due Friday at 5pm

Last Time: Galaxies


Q: what's a galaxy? main types ("morphologies")?

Q: internal dynamics?

Q: role of dark matter in galaxy structure and dynamics?

Galaxies are Made of Dark Matter

Last time: all galaxies have flat rotation curves matter extends out far beyond visible galaxy

- galaxy masses dominated by dark matter
- dark halo extends far beyond visible galaxy forms gravitational potential well ordinary matter falls in, form visible galaxy

ω

Physical Cosmology

Modest goals:

scientific understanding of the

- origin
- evolution
- contents
- structure
- future

of the Universe

To be a science: must have empirical evidence \rightarrow need observable data to reveal/test the above

Ю

Q: like what?

A Universe of Galaxies

Galaxies are the building blocks of the Universe similar to stars as building blocks of galaxies and atoms as building blocks of matter

Data: galaxy survey = map of galaxies = map of the Universe www: Typical survey data: 2dFGRS

Q: what do you notice?

Q: features on large scales? small scales?

Structure of the Universe

Galaxy distribution in space:

- small scales: clumpy
- large scales: smooth

Einstein's Cosmological Principle

on large scales, Universe is

1. homogeneous:

galaxies fill space with (nearly) uniform density

2. isotropic:

universe looks same in all directions

Q: What's a U that is isotropic but not homogeneous?
 ¬ Q: What's a U that is homogeneous but not isotropic?

iClicker Poll: Guess the Galaxy Motions

measure velocity respect to us for many galaxies i.e., in galaxy spectra, look for shifts in lines

What are proportions of approaching=blueshift vs receding=redshift?

- A number approaching > 100 number receding
- **B** number approaching > 10 number receding
- **C** number approaching \approx number receding
- D

E

- number receding > 10 number approaching
- 00
- number receding > 100 number approaching

Motions of Galaxies

```
Sloan Digital Sky Survey: \approx 1,000,000 galaxy spectra
only 16 galaxy blueshifts (many spurious)
essentially all galaxies show redshift
all galaxies move away from us!
```

```
Edwin Hubble (1929)
galaxy distance d and speed v related
www: Edwin's original data; modern data
data show: v \propto d, or
```

v = Hd

(1)

Q: in simple terms, what does this say about galaxy motion?

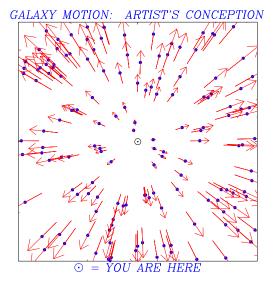
Hubble's Law

Hubble says: farther \rightarrow faster

more specifically: Hubble's Law

v = Hd

(2)


H: "Hubble constant" (sometimes written H_0) *Q*: units of *H*? value: $H_0 \approx 70 \text{ km/(s \cdot Mpc)}$

draw random (homogeneous) dots Q: add velocity vectors—what's the pattern?

What does velocity pattern suggest?*Q: logical possibilities?*

The Meaning of Hubble's Law

observe: all galaxies move away from us!
galaxy motion highly organized
not random! not like atoms in gas
→ cries out for interpretation!

Egoist view: we are at center of Universe! but:

- MW typical galaxy, not special
- center un-Copernican

Einstein view:

no center! ...and no edge! Universe is homogeneous!
the universe is expanding

highfalutin mathematics:

Hubble's law a very special mathematical form in fact, the **only** form that has the following property: *photocopy universe*

Hubble's law universal:

in expanding U, all galaxies

find v = Hd

 \rightarrow don't need to live in a special place to

find Hubble's law

Revolution Re-Re-Revisited

Copernican Revolution I (17th Century):

Earth is one typical planet among many not center of solar system

Copernican Revolution II (earth 20th Century):

Sun is one typical star among many not center of Milky Way Galaxy

Copernican Revolution III (1920's):

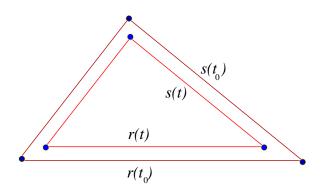
Milky Way is one typical galaxy among many Universe much larger than previously thought

Copernican Revolution IV (1929):

we live in an expanding universe which has no center at all!

13

Expanding Universe: Theory


recall General Relativity (Einstein Gravity):
* space (& time) dynamic!
* Universe is dramatic example of this

consider arbitrary triangle defined by 3 observers at t_0 Hubble law \rightarrow observers in relative motion \rightarrow at later time t, larger triangle

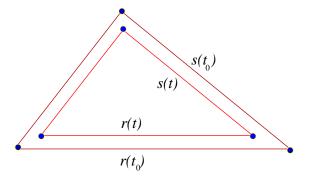
the claim:

later Δ always *similar to* original Δ

- Q: what are similar triangles?
- *Q: why must similarity hold?*
- $\stackrel{!}{\Rightarrow}$ Q: connections among r's and s's?

similar: triangle angles preserved \Rightarrow side ratios preserved,

so must have


$$\frac{r(t)}{r(t_0)} = \frac{s(t)}{s(t_0)}$$

holds for any triangle,

so side *length ratio depends only on time t:*

$$a(t) = \frac{r(t)}{r(t_0)} = \frac{s(t)}{s(t_0)}$$

Q: what does this imply about cosmic motion?

We have shown:

Cosmo Principle demands any length r(t) evolves as

$$r(t) \propto a(t)$$
 (3)

and so without loss of generality we may write

$$r(t) = a(t) r_0 \tag{4}$$

where we choose $a(t_0) = 1$ today, and $r_0 = r(t_0)$ is *present value* of length ("comoving coordinate")

a(t) must be universal cosmic scale factorcan depend only on timeand at any t: a has same value everywhere in space

G This is huge! *Q: why? What have we proven?*

Explaining Hubble: Expansion

on cosmic lengthscales, space uniformly expands stretches "like rubber sheet"

Describe mathematically: write d(t) = a(t)r

d(t): physical separation

r: fixed coords on rubber sheet

a(t): measures expansion – "scale factor" or stretch-o-meter put present age of Universe: $t = t_0$ today then $a(t_0) = a_0 = 1$

How does the Universe expand?

- need to find $a(t) \rightarrow$ encodes cosmic expansion history
- How to find a(t)?
 similar to Newtonian physics we know and love:
 find law of motion that relates motion to gravity sources

consider two points (observers) in Universe at t

- (arbitrary) central point at r = 0
- a test mass m at distance d(t) = a(t) r

find energy, motion of test mass

- \rightarrow tells motion of any arbitrary point in universe
- \rightarrow cosmic dynamics!

19

what is energy, motion of test mass?

• sees spherical "enclosed" cosmic mass

$$M = \rho V_{\text{sphere}} = 4\pi/3 \ d^3\rho$$

• has energy $E_{tot} = KE + PE = const$ (< 0 if bound)

$$\frac{1}{2}mv^2 - \frac{GMm}{d} = const \tag{5}$$

$$m\left[\frac{1}{2}(Hd)^2 - \frac{4\pi G}{3}\rho d^2\right] = const$$
(6)

$$H^{2} - \frac{8\pi G}{3}\rho = \frac{2const}{md^{2}} = -\frac{\kappa}{a^{2}}$$
(7)
$$\left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3}\rho - \frac{\kappa}{a^{2}}$$
(8)

Friedmann equation for evolution of a(t)

20

Cosmodynamics

Friedmann is cosmic "equation of motion" kinda a cosmic "F = ma" (really, cosmic energy equation)

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3} \rho - \frac{\kappa}{a^{2}}$$
(9)

Which means that the evolution of the universe

- expansion rate $H = \dot{a}/a$, and thus
- cosmic history a(t), are controlled by are controlled by the contents of the universe
- density ρ (can change with time)
- "energy" (really-curvature) constant $\kappa = const$

A Matter-Only Universe

Simplest situation (simplest universe!): matter only

- $\rho = \rho_{\text{matter}}$ only (no funny business!) then in sphere *d*, mass $M = 4\pi d^3 \rho/3 = const$ so $\rho \propto a^{-3}$: as U expands, ρ decreases!
- total energy (curvature) zero: $\kappa = 0$

Evolution Solved

Assemble the pieces and turn the crank:

$$\begin{array}{l} (\dot{a}/a)^2 = 8\pi G/3 \ \rho_0 a^{-3} \\ \dot{a}/a \propto a^{-3/2} \\ a^{1/2} da \propto dt \\ \text{integrate: } \int_0^a a^{1/2} da \propto \int_0^t dt \\ a^{3/2} \propto t \\ a \propto t^{2/3} \\ \text{put } t = t_0 \ \text{today} \\ \text{want } a(t_0) = 1 \end{array}$$

So finally arrive at solution for matter-only Universe: $a(t) = (t/t_0)^{2/3}$ Q: fate of such a universe? *i.e.*, what happens when $t \to \infty$? What does it mean? For matter-only universe, $a(t) = (t/t_0)^{2/3}$

fate: *a* always increases with time \rightarrow universe expands forever as $t \rightarrow \infty$, then $a \rightarrow \infty$ universe becomes very low density!

what is $t_0 = \text{age of Universe}$? since $H = \dot{a}/a = 2/3t$ always! today: $t_0 = 2/3 \ 1/H_0 \simeq 10$ billion years

```
Q: is this reasonable?
compare: Earth 4.6 billion yrs
<sup>№</sup> oldest stars: 10–12 billion yrs
```