Astro 210 Lecture 41 May 2, 2018

Announcements:

 \vdash

- Final Exam: May 7, 8:00 am 11:00 am info on Moodle
 HW and Exam solutions posted
 Hint: HE2 Q1a worth a look
- Office Hours: today, TA tomorrow
- Solar Observing: alternative exercise posted for those unable to attend in person due Friday at 5pm
- ICES Online still available

I do read and use your comments! pay it forward to future ASTR 210 generations

Thus Far: the Large Scale Structure of the Universe

Q: what's the Cosmological Principle?

Q: why is it very restrictive on allowable universes?

Q: what is Hubble's Law? What's a variable, what's a constant? Q: possible interpretations?

Expansion Rate

Consider two observers (e.g., galaxies) at time tseparated by distance $d(t) = a(t)r_0$ with r_0 the distance today at time t_0 , when $a(t_0) = 1$

what is velocity of one point as measured by the other?

$$v(t) = \frac{\partial}{\partial t}d = \frac{\partial}{\partial t}(ar) = \dot{a}r$$
(1)
$$= \frac{\dot{a}}{a}ar = \frac{\dot{a}}{a}d \equiv H d$$
(2)

where "overdot" is time derivative: $\dot{a} = da/dt$ so expansion gives v = Hd, with $H = \dot{a}/a$ \star Hubble's law!

ω

★ we see H = H(t) measures expansion rate and need not be constant! → "Hubble Parameter" H_0 is present value, can (& does!) change with time

Expanding Universe: The Past

In the past, Galaxies closer together: a(t) < 1U. was **denser**, also *hotter*

```
When universe began: a \rightarrow 0 as t \rightarrow 0
extreme conditions!
hot
dense
state: \Rightarrow big bang
```

expanded, cooled to present state

▹ Where did the Big Bang Happen?↓ Q: Already know enough-where?

Where Was the Big Bang?

Cosmological Principle: Universe is homogeneous & isotropic

demands: no special points!

***** big bang has no center!

***** big bang happened everywhere

Age of the Universe

Simple-minded estimate: imagine

- each galaxy launched with some initial speed $v = v_{init}$ some launched faster, some slower
- each keeps constant speed over age of universe t_0 distance traveled: $d = vt_0$

but today $v = H_0 d$, so

$$d = vt_0 = H_0 dt_0 \tag{3}$$

and so

$$H_0 t_0 = 1 \tag{4}$$

estimate "expansion age" $t_0 \approx 1/H_0 = 14$ billion years \bigcirc Q: how does this compare to age of solar system? Q: why is this estimate too simple? Solar system age: 4.6 billion years

 \rightarrow Sun & Earth alive for last 1/3 of age of Universe

note: estimate too simple!

- galaxies feel each other's gravity, do not "coast"
- expansion rate changes with time

using best estimate of expansion history H, best estimate of expansion age is $t_0 = 13.7$ billion years \rightarrow close to our simple estimate!

¬ Q: given that U expanding today what are possible fates in future?

The Fate of the Universe

The story until ~8 years ago expansion and fate of universe is competition: *outward inertia of expansion* vs *inward gravity* ...just like *pop fly* (ball hit upward)

currently: U expanding like ball (pop fly) launched upward

future possibilities:

00

- gravity > inertia: recollapse like $v_{esc} > v$ -ball falls back
- gravity < inertia: expand forever
 like vesc < v-ball (rocket!?) leaves earth!
- gravity = inertia: expand forever but $H \to 0$ at $t \to \infty$ like $v_{esc} = v$ -ball escapes but $v \to 0$ at $t \to \infty$

iClicker Poll: Your Preferred Cosmic Fate

We will see: data now seem to foretell actual cosmic fate But! final answer not known with 100% certainty

So: regardless of data, if you have to pick one of these Which cosmic fate do you prefer?

B

expand forever: Big Chill, $H \rightarrow 0$ as $t \rightarrow \infty$

C	

recollapse: Big Crunch

Final iClicker Poll: Cosmic Acceleration/Deceleration

How should the cosmic expansion *rate* change w/ time?

increase: U. accelerates, $d^2a/dt^2 > 0$

B decrease: U. decelerates, $d^2a/dt^2 < 0$

C constant: U. coasts, $d^2a/dt^2 = 0$

Expansion and Gravity

Galaxies have mass \rightarrow gravitate \Rightarrow gravity changes motion from free-body coasting \Rightarrow expansion rate must change with time Since gravity attractive, *expect deceleration* \rightarrow just like upgoing pop fly

....BUT...

Current data: Universe is *accelerating* !?!?

What does this mean?

need *repulsive force* to overcome gravity

- $\stackrel{\scriptscriptstyle {\scriptscriptstyle \leftarrow}}{\scriptstyle {\scriptscriptstyle \leftarrow}}$ only important on large (cosmological) scales $\gg 1$ Mpc
 - → dark energy

A huge surprise! A huge mystery! What is dark energy? Will it change with time? Perhaps related to very high energy processes (quantum gravity)? Perhaps related to goings-on in very early Universe?

What little we do know:

if dark energy takes simplest form

("cosmological constant")

then dark energy acceleration between particles (galaxies)

is *repulsive*, with $g_{\text{DE}} \propto r$

Q: what does this imply for fate of U.?

12

Dark Energy and a Dark Future

dark energy acceleration $g_{\mathsf{DE}} \propto r$

- \rightarrow force *increases* as particles move apart
- \rightarrow more repulsion as galaxies recede
- so acceleration only increases with time!
- \rightarrow U. fate is to expand forever!

if dark energy acts as we think (a big if!) we are fated to a "Big Chill"

Taking the Temperature of the Universe

What does it mean to live in expanding universe?

today: Universe has very low density $\rho_0 = 10^{-26} \text{ kg/m}^3$ *in past:* everything closer together \rightarrow *density higher*

very early U. also very dense:

- particles interact/collide
- matter "thermalized" \rightarrow U should have temperature
- *Q:* How can we measure *T* of universe?
- Q: Where should we look to measure T?
- $\stackrel{\checkmark}{=}$ Q: How should T vary from place to place (at any one time)?

Cosmic Temperature Measured

if Universe was thermalized, has $\boldsymbol{T},$ then

- should contain blackbody radiation
- this radiation should be everywhere (homogeneous, isotropic) prediction made in early 1950's, forgotten(!) until 1965

Measure T from spectrum www: Penzias & Wilson radiation everywhere cosmic microwave background radiation (CMB)

universe spectrum is very accurate blackbody www: CMB spectrum, errors \times 100 $T = 2.728 \pm 0.004$ K

15

Q: what does this discovery prove?

Cosmic Microwave Background: Implications

cosmic blackbody shows *U once thermalized* → *once very dense* ⇒ needed hot dense phase: evidence for big bang!

- if had microwave eyes, sky very bright in radiation from big bang
- 10% of "snow" on TV is radiation from big bang

Big Bang Nucleosynthesis

```
Theory
atomic nuclei made of protons p and neutrons n
bound together by nuclear force
at high temperature \rightarrow early times
U so hot, collisions so violent, that nuclei "ionized" into n, p
then U cools until n, p \rightarrow nuclei
```

```
t = 1sec - 3 min: kT = 10^{10} K to 10^{6} K
nuclei "ionized" (n & p only) → "neutral" (combined in nuclei)
24% helium
traces of D, <sup>3</sup>He, <sup>7</sup>Li
76% "leftover" protons (<sup>1</sup>H)
```

17

Observation measure He in universe: $\rightarrow 24\%$ matches theory!

theory & obs. agree!

 \rightarrow big bang theory works well back to t=1s !

The Cosmic History of Matter: Big Bang to Now

- 1. big bang nucleosynthesis: light elements
- 2. Universe cools, matter clumps stars, Galaxies born
- 3. **stars:**

all heavy elements

Solar system, and you: products of

- big bang (hydrogen, helium, lithium)
- low mass stars (example: carbon from red giants/AGB)
- high mass stars (example: oxygen, iron from supernovae)

19

a cosmic symphony; we are results

The Big Picture Summarized

cosmologists M. Python "The Galaxy Song" from The Meaning of Life (1983) best viewed with subtitles on

The Very Early Universe

before big bang nuke:

- $T > 10^{10}$ degrees
- very high-energy collisions:

study with particle accelerators

- ▷ Fermilab, Batavia IL (Chicago suburb–go visit!)
- Large Hardonic Collider (LHC), Geneva Switzerland to visit)

www: Fermilab

- www: tunnel
- www: LHC
- www: collision

21

Inner Space and Outer Space

- 1. Fermilab and LHC are *microscopes* probing nature on the smallest scales
- 2. Fermilab and LHA are also *telescopes* probing conditions of universe at kT = 1 TeV = 10^{12} eV $\rightarrow t = 10^{-12}$ sec

2. Early Universe:
→ "poor man's accelerator"
exotic particles created
perhaps these are dark matter?
weakly interacting massive particles: WIMPs

Note: Note:

Remaining Open Questions

To name a few:

- what is the dark energy?
- how will the dark energy influence the fate of the Universe?
- what is the dark matter?
- how did galaxies form?
- when did the first stars form? the first black holes?
 what are their observable "fossils" today?
- what happened at t = 0 (singularity)?
- will this be on the test?

THANK YOU and KEEP IN TOUCH