Astro 210 Lecture 6 Jan 29, 2018

Announcements

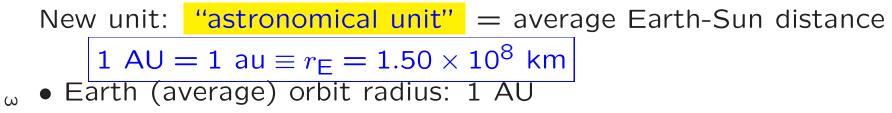
- HW2 due online in PDF, Friday 5:00 pm
- HW1 extended until 11:59pm today
- register your iClicker; link on course webpage
- first Planetarium shows Mon Feb 5 and Wed Feb 7 info online: **reservations**, schedules, directions, report form
- if this is your first class: see me afterward!

Last time: a tale of two cosmologies

• Geocentric

Q what's that? how does it explain sunrise? retrograde?

• Heliocentric


Q what's that? how does it explain sunrise? retrograde? bonus: gives relative scale of Solar System *Q*: how? New unit: AU, sometimes also written au *Q*: what's that?

Today: geocentric vs heliocentric cagematch!

Copernican Model: Solar System Proportions

Venus: maximum angle from Sun = max "elongation" observed as $\alpha_{max} = 46^{\circ}$ Venus Earth • r_{v} Sun

from diagram: right triangle, Earth-Sun distance is hypotenuse $\Rightarrow \sin \alpha_{max} = r_V/r_E$ $\Rightarrow r_V = r_E / \sin \alpha_{max} = 0.72 r_E$

• Venus orbit: 0.72 AU

Copernicus: What's New and What's Not

- planets still on spheres
- Copernicus sill used epicycles!
- predictions not better than in Ptolemy's model
- $\bullet \rightarrow \text{geometrically equivalent}$
- Copernicus' model not generally accepted and Ptolemaic–Copernican disagreement though to be metaphysical, *unanswerable* question

Q: so how do we decide which is right?

Tycho Brahe 1546-1601: Danish Astronomy Extraordinaire

in youth: observed "nova stella" (supernova)

- www: Tycho sketch
 - \rightarrow heavens are not eternal but changeable ("corruptible")!

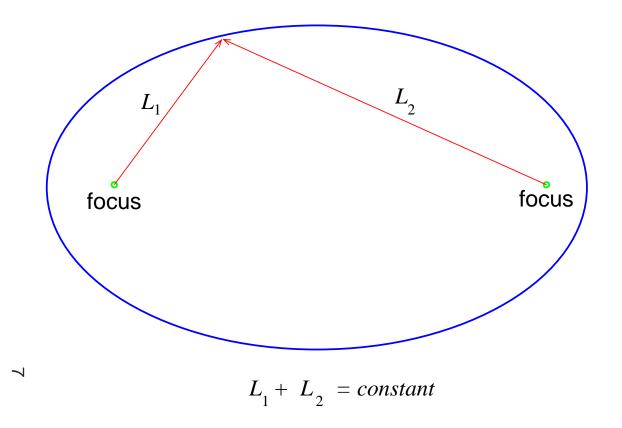
observed Sun, Moon, planets for 20 years: no telescope, but still careful, accurate data

Tycho not a good number cruncher

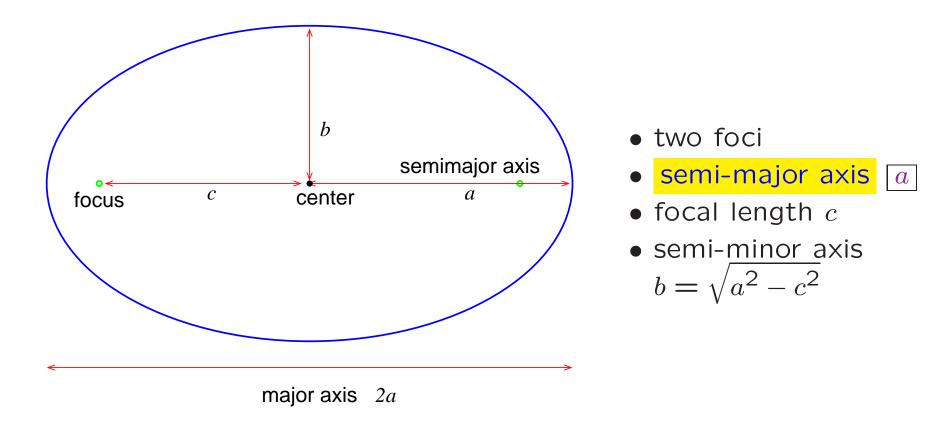
 \rightarrow like any good professor: made grad student do the work!

Johannes Kepler 1571–1630: Harmony of the Worlds

Analyzed Tycho's precision data for **20 years**(!) \rightarrow especially Mars motions

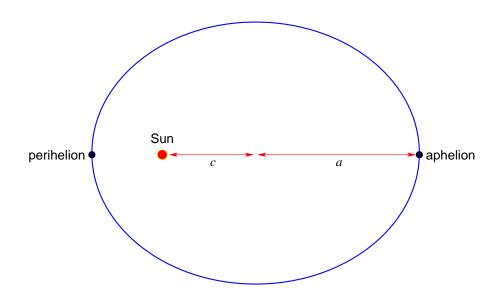

at first: used *heliocentric model* with *circular orbits* but observations didn't quite agree a small error (few arc min!) remained...took seriously

after years of trial & error:


- abandoned circular orbits
- completely & accurately described planet orbits

Kepler I: Law of Ellipses

each planet's orbit is an ellipse with the sun at one focus



Ellipse Anatomy

any ellipse fully characterized by:

^{∞} a and eccentricity e = c/aQ: what do we get for e = 0? e = 1? www: eccentricity demo Kepler I: orbit is ellipse with sun at one focus

Orbit anatomy *aphelion*: *farthest* point from Sun *perihelion*: *closest* point to Sun

- Q: what is aphelion distance in terms of a and e?
- *Q*: If the Sun's at one focus, what's in the other focus?
- Q: Sun, Moon, planet geometry in 3-D and on celestial sphere?
- *Q: What does Kepler I not say about orbits?*

Q

Aphelion/perihelion distance:

$$r_{\text{ap/peri}} = a \pm c = a \pm a \frac{c}{a} = (1 \pm e)a \tag{1}$$

At the other focus: nothing! (sorry!)

ellipses are **planar** objects:

10

- In 3D: Moon-Earth, Sun-Earth, and Sun-Planet orbits are each confined to its own plane not necessarily all coplanar (and are not!), but close
- on sky = celestial sphere: great circles

Note: Kepler I only gives orbit *shape* but says *nothing* about how orbit evolves in time \rightarrow need more info to fully describe orbit, hence...

Kepler II: Law of Equal Areas

a straight line from the planet to the sun sweeps out equal areas in equal times

diagram: sketch areas

this amounts to telling about speed of planet

iClicker Poll: Kepler II and Planet Speed

When does a planet move the *fastest*?

- A When it is closest to the Sun
- B When it is farthest from the Sun
- C Trick question! In vacuum of space, planet speeds must be constant

www: area animation

12

Q: This still doesn't fully characterize an orbits-why not?

Kepler I gives orbit shape in space Kepler II gives orbit evolution over time

but haven't yet connected the two: how does spatial character (e.g., semimajor axis a) relate to time character (e.g., period P)?

Need one last law...

Kepler III: Connecting Space and Time

planet orbit period P and a are related:

 $P^2 \propto a^3$

 $\Rightarrow P^2/a^3 = const$

constant is same value for all planets around Sun! so any planet's orbit obeys

$$\frac{P^2}{a^3} = \frac{P_{\text{Earth}}^2}{a_{\text{Earth}}^3} \tag{2}$$

and thus we can choose to write

$$\left(\frac{P}{P_{\mathsf{Earth}}}\right)^2 = \left(\frac{a}{a_{\mathsf{Earth}}}\right)^3$$
 (3)

14

Q: in other words?

Kepler III: The Mighty Equation

For any object orbiting Sun (not just planets!):

$$P_{\rm yrs}^2 = a_{\rm AU}^3 \tag{4}$$

Q: ok for earth? where *P* written in years, *a* in AU

Very powerful! e.g.:

Asteroids exist with orbits inside 1 AU (and some cross 1 AU!!) www: inner solar system objects--in real time!

iClicker Poll: Kepler III

Kepler III: $P_{yrs}^2 = a_{AU}^3$

Consider an asteroid with an orbit entirely inside 1 AU Is its period longer or shorter than a year?

- A P > 1 yr, no matter eccentricity e
- **B** P < 1 yr, no matter what e
- С
- can't answer without knowing e

Kudos to Kepler

Several points worth noting...

* An amazing discovery—mathematics underlies the workings of the cosmos!

★ Keplers laws remain accurate to this day—indeed, in slightly generalized form will show up in many (most!) situationswhere motions are controlled by gravity

 \star Yet note what we still don't have:

an understanding of why Kepler's laws hold

- \rightarrow that is, what is the *mechanism* that makes
- □ planets move this way

... for that, need to wait for Kepler's successors...

Galileo Galilei

First to use telescope in Astronomy

www: Galileo shows scope to Duke

contributions:

- mountains on the moon
- moons of Jupiter
- sunspots

None of these directly contractic the geocentric model but all are contrary to its underlying philosophy ★ heavenly objects are imperfect

 $_{\rm to}$ \star a clear example of a heavenly motion not centered on Earth