Astro 596/496 NPA Lecture 2 January 16, 2019

Announcements:

- Pick up: Syllabus
- Preflight 1:

posted soon on Compass due Fri. Jan 25 before class

Last time: overview

Now: the Great Work begins!

 \vdash

Program Notes: ASTR 596/496 NPA Bugs/Features

notes online—but come to class! some people find it convenient to print 4 pages/sheet

▷ class ∈ diverse backgrounds: ask questions!

Socratic questions

typos/sign errors Dirac story please report errors in lectures and problem sets

Ν

Slices of the Cosmic Pie

We want to use physics to understand the nature and history of cosmic matter

To place in context:

(looking ahead to results we haven't derived)

Q: what are the main components of the universe today?

Q: which is the dominant component, and by how much?

The Contents of the Present Universe

Q: what questions does this raise?

Cosmic Ingredients: Mysteries

- What is dark energy? how does it interact?
- What is dark matter? how does it interact?
- Are the dark components related to each other? to baryons?
- What form do the baryons take?
- What sets the abundances?

СЛ

• How have these evolved with time?

Observables for Nuclear and Particle Astrophysics

To be a science: must have empirical evidence \rightarrow need observable data to reveal/test cosmic matter history

Seek messengers/observables which:

- probe nature of cosmic constituents
- reveal history of cosmic matter
- ★ indicate nuke/particle interactions have taken place.

Q: What are some? (no peeking at notes)

_{on} Q: Compare observables list to cosmic pie chart. Comments?

Observables for Nuclear and Particle Astrophysics

Observable	Example	
direct matter detection	terrestrial labs, cosmic rays	
neutrinos	solar, supernova neutrinos	
high-energy photons	X-rays, γ -rays	
gravitational waves	BH-BH, NS-NS merger waves	
abundances: elemental & isotopic	Sun, Galactic stars	
dark matter	direct detect, annihilation product	
dark energy	cosmic acceleration	

Note: the dominant cosmic components today

are the hardest to track observationally!

will look at all observables

but central to both nuclear and particle astrophysics:

the baryonic universe

Baryons: Praise Them or Bury Them?

practical definition ("close enough for astro work"): **baryon** = protons, neutrons, or any combination thereof \rightarrow all nuclei \rightarrow all atoms in any form \rightarrow **'ordinary' matter** ...more formal definition to come...

baryons are modest fraction of cosmic matter today and even smaller fraction of total cosmic mass-energy

and (at least some) baryons are not exotic with (fairly) well-understood physics

 $_{\infty}$ Q: so why would a particle astrophysicist study cosmic baryons?

In Defense of Baryons

★ because we know much about baryonic physics

> both micro (particle, nuclear, atomic)

and macro (hydrodynamics, condensed matter) baryons show how particle properties are manifest in cosmo/astro context

 \Rightarrow good training for dark matter, dark energy

\star lessons:

Q

- detailed picture of how baryonic microphysics determines cosmic properties and shapes cosmic events
- baryons respond to dark sector at least via gravity infer influences of dark matter and dark energy
- see how unexpected and complex phenomena emerge

***** we are baryons!

baryonic history is our history!

Nuclei: Orders of Magnitude

Nuclear Properties: Orders of Magnitude

atomic nuclei are made of **nucleons**: *neutrons* n and *protons* p

Q: what roughly is the nucleon size? how do we know?

Q: what roughly are the nucleon masses? how do we know?

Meet the Nucleons

nucleon radius similar for both n and p:

 $r_0 \sim 10^{-15} \text{ m} = 1 \text{ femtometer} = 1 \text{ fm} = 1 \text{ fermi}$ (1)

measure via scattering with e, and between nucleons

masses: measure via H atom mass, neutron scattering

nucleon	mass	spin	charge
proton	$m_p c^2 =$ 938 MeV	$S_p = 1/2$	$Q_p = \ Q_e\ = e$
neutron	$m_n c^2 = m_p c^2 + 1.3 \text{ MeV}$	$S_n = 1/2$	$Q_n = 0$

note $m_n \approx m_p$: nucleons have nearly the same mass $\Delta m/\langle m
angle \sim 10^{-3}$

Complex Nuclei

complex nuclei are bound systems of > 1 nucleon: *N* neutrons and *Z* protons

Q: nuclear baryon number? nuclear charge?

Q: rough estimate of nuclear mass?

Q: rough nuclear size if closely packed?

Building Nuclei

 ${\it N}$ neutrons and ${\it Z}$ protons has

- **baryon number** = total nucleon number $\equiv A = N + Z$
- electric charge = atomic number = Z

```
since nucleons have similar masses, naively expect

mass M \sim Nm_n + Zm_p \approx (N + Z)m_u = Am_u

with m_u a mean nucleon mass unit

and A also called mass number
```

nuclear size: if close-packed spheres then for nucleus with mass number A expect: total volume $V_A \approx AV_1$, so $r_A^3 \approx Ar_0^3$, and

$$r_A \sim A^{1/3} r_0 \tag{2}$$

Nuclear Binding Implies a Nuclear Force

most nuclei contain Z > 1 protons nearly touching! huge Coulomb repulsion!

total potential energy roughly

$$E_{\rm C} \sim \frac{Z^2 e^2}{r} \sim 1.4 \,\, {\rm MeV} \,\, Z^2 \,\, \left(\frac{1 \,\, {\rm fm}}{r}\right)$$
 (3)

if this is unopposed, nuclei would fly apart!

thus: existence of nuclei demands a stabilizing force the nuclear interaction / nuclear force

- attractive at short distances
- stronger than Coulomb force at short distances
- $\stackrel{_{\mathrm{ff}}}{_{\mathrm{ff}}}$ with ~ MeV scale strength
 - weakens at long distances or all nuclei would merge to one!

Nuclear Notation and Charting

notation: $\begin{bmatrix} A \\ N \\ X^Z \end{bmatrix}$ shorthand: chemical symbol $X \Rightarrow Z$, then can get N = A - Ze.g., ${}_1^3 He^2 \rightarrow {}^3 He$

"nuclide" = a particular (Z, N) combination strictly, and a particular energy state of that combo

```
Diagram: Chart or Table of Nuclides
analog of Periodic Table of Elements
plot nuclei in (N, Z) array
isobar: fixed A (e.g., <sup>7</sup>Li and <sup>7</sup>Be)
isotope: fixed Z (e.g., <sup>6</sup>Li and <sup>7</sup>Li)
isotone: fixed N (e.g., <sup>14</sup>N and <sup>15</sup>O)
```

Q: any Simpsons fans?

16

Q: isobar/tope/tone patterns on nuclide chart?

Meet the Chart of the Nuclides

now look at data for all known nuclei color coded by stability/lifetime

www: Chart of the Nuclides

17

Q: what patterns do you notice?

Nuclei: Diversity and Regularity

first glance at chart of nuclides reveals diversity!

- huge numbers of known nuclei: many more than elements on Periodic Table
- \bullet generally many isotopes of each element Z
- \bullet generally many isotones for each N
- generally many isobars for each A

but also patterns emerge!

- at small A: stable nuclei have $N \approx Z$ roughly equal neutrons and protons
- at large A: stable nuclei have N > Zstability requires extra neutrons
- but most known nuclei are unstable!
- "valley of stability" surrounded by peaks of instability
- lifetimes generally shorter the farther from valley

18

We will soon understand these trends!