Astro 596/496 NPA Lecture 3 January 18, 2019

Announcements:

- Pick up: Syllabus
- Preflight 1 posted
- Due next Friday before class

Last Time: overview of the cosmic baryons

Q: once again, what's a baryon?

Q: how much of cosmic mass-energy is baryonic?

Q: why should we care about them?

Introduction to nuclei

 \vdash

Q: what are nucleons? what are they like?

Nuclei in the Cosmos: Abundances

Central Baryonic Observable: Abundances

a key tracer of cosmic particle history and *the* key tracer of cosmic nuclear history is baryonic *composition* \Rightarrow **abundances**

Q: where can we measure abundances?

Cosmic Composition: Observable Abundances

Solar System

Sun |, planets, asteroids, comets, dust

Milky Way Galaxy

stars, interstellar medium (ISM) gas and dust, cosmic rays

External galaxies

ISM, stars

Intergalactic Medium

intergalactic gas seen in absorption against background object

4

Q: which is best known? What about isotopes vs elements?

Solar System Summarized Abundances by Mass and Number

 $^{\circ}$ Q: what's what? Why are mass and number pies different?

Solar System Composition: Broad Summary

Solar System Abundances: Mass Fractions

- X: hydrogen
- Y: helium
- Z: "metals" = everything else!
 - e.g., famous metals C, N, O!

σ

Q: how could we show composition in more detail?

Solar System Isotopic Abundances: "Rosetta Stone"

Q: what strikes you?

Solar System Abundances: Trends

This pattern is central to nuclear astrophysics and ultimately all of astronomy!

- impressive scale abundance variation by 12 decades!
- zig-zag between adjacent nuclei
- dropoff towards high masses
- peaks, esp iron, also in very heavy elements (Pt, Pb)
- dip: LiBeB
- ...Will unpack this by the end of the course

Q: where measured?

 ∞

Where measured?

Sun

- photosphere
- only elemental abundances
 (sum over isotopes) Q: why?

Meteors

Q

- most primitive: carbonaceous chondrites
- much more precise abundances, and get isotope info
- but only measure "refractory" elts (condense readily) can't measure "volatile" (gaseous/hard to condense) e.g., H, He, C, N, O, Ne, Ar

Q: so how can we put both on same scale?

Q: what is physical significance of solar system abs?

Solar Abundances: Physical Significance

Strictly:

solar system abundances \Rightarrow matter at Sun/planets birth record of all nuclear processing and mixing of that material

Broadly:

Sun \sim typical Pop I (Milky Way disk) star

 \Rightarrow expect similar patterns in **nearby MW disk stars**

Practically:

serve as benchmark, fiducial standard

(much as Sun is a standard, e.g., L_{\odot} and M_{\odot})

Quantifying Abundances

```
see Arnett, Ch. 1
```

composition quantified via

abundance \equiv ratio of species *i* to some standard

usually "species" = element or isotope

in choosing how to quantify: want abundance changes to reflect nuclear/high-energy transformations, but to be invariant under compression Q: why? consider a sample of (bayronic) matter

- (total) mass density: ρ
- mass density of species (isotope) i: ρ_i
- number density of species *i*: n_i

Q: how are these related?

Total density is sum of component species:

$$\sum_{i} \rho_{i} = \rho \tag{1}$$

Mass and number densities related

$$\rho_i = m_i n_i \tag{2}$$

1->

with $m_i = mass$ of one nucleus/atom

these quantify sample composition
 but: not good as abundance measures
 Q: why?
 Q: what would be better?

compression invariance \Rightarrow take *ratio*

of density to density of conserved quantity:

- mass density (if non-relativistic)
- baryon number density n_B

```
again: "baryon" = proton or neutron
a nucleus with N neutrons, Z protons
has baryon number A = N + Z
and baryon number density n_{B,i} = A_i n_i
```

Useful (theoretical) abundance measures of species *i*:

mass fraction: $X_i = \rho_i / \rho$ mole fraction: $Y_i = n_i / n_B$

note: traditional astronomers *mass fraction* shorthand:

$$X_{H} = X$$

 $X_{He} = Y$
 $X_{other} = Z$ "metallicity"

normalization: X + Y + Z = 1observe/infer: solar system value $X_{\odot} \simeq 0.70, Y_{\odot} \simeq 0.28, Z_{\odot} \simeq 0.02$

but for astrophysical sources, can't directly measure n_i or ρ_i *Q: what do we measure?* direct astrophysical composition observables: spectra from emission/absorption lines, measure column densities $N_i \simeq \int_{mfp} n_i \ d\ell$

observers report ratios $N_i/N_j \simeq n_i/n_j$ Q: what assumed in \simeq ?

usually normalize to H (most abundant) $A_i/H \equiv N_i/N_H \simeq n_i/n_H$ e.g., solar system mean (Fe/H) $_{\odot} = 3.2 \times 10^{-5}$

```
For SS isotopes: arbitrarily normalize to Si (10<sup>6</sup>)
www: SS abs plot
```

Abundance Patterns Encode Cosmic History

solar system composition shows clear patterns and features

our job: want to understand how these patterns came about

we will see: these patterns represent

- a symphony of diverse cosmic and stellar processes
- built up from Early Universe to the present
- featuring ensemble of *nuclear physics, particle physics* in *extreme astrophysical contexts*

Nuclear Physics

Nuclear Masses

to zeroth order: mass of nucleus = $A \times$ "nucleon mass"

to make this idea precise, define atomic mass unit: amu, sometimes just written u:

$$m_{U} = \frac{m(^{12}C)}{12} = \frac{1 \text{ g}}{N_{A}\text{mol}} = 1.66 \times 10^{-24} \text{ g}$$
$$= 931.5 \text{ MeV}/c^{2} \simeq 1 \text{ GeV}/c^{2}$$
$$\simeq m_{p} \simeq m_{n}$$

note: $m(^{12}C)$ is neutral atom mass: includes $6m_ec^2$ so $m_ec^2/2$ included in m_u

then: for each nuclide *i* measure neutral atom mass m_i find: $m_i \approx A_i m_u$ but not exact equality *Q: how best to proceed?*

Mass Defects

for each nuclide *i*, define: mass excess or mass defect:

$$\Delta_i = (m_i - A_i m_u)c^2 \tag{3}$$
(4)

e.g.,
$$\Delta(^{12}C) = 0$$
 Q: why?
 $\Delta(^{16}O) = -4.737$ MeV
 $\Delta(^{1}H) = 7.289$ MeV

www: Chart of the Nuclides Δ_i entries

Q: what would it mean if all mass defects = 0? $\stackrel{\text{$\otimes$}}{\sim}$ Q: mass defects \neq 0 for all but ^{12}C -implications??

Nuclear Binding Energy

if nucleons had same mass $m_{\rm u}$ and *did not interact* then pile of A_i nucleons has mass $m_i = A_i m_{\rm u}$ exactly and we'd measure $\Delta_i = 0$ but no interactions = no biding = nucleons would disperse no nuclei would exist! we wouldn't exist! yikes!

Instead **nucleons do interact** via nuclear force!

- bound together in nuclei
- must input energy to rip nuclei apart!

Q: how to quantify binding?