Astro 596/496 NPA Lecture 4 January 23, 2019

Announcements:

Preflight 1 posted
 Due next Friday before class
 for PF1, readings are *suggested* – can skim
 Director's Cut Extras below has notes
 on notation in Asplund paper

Last Time: abundances

Q: top solar system elements?

nuclear masses

 \vdash Q: approximate mass of nucleus with (N, Z)? Q: convenient expression for exact mass?

Mass Defects

mass excess or mass defect of nuclide *i*:

$$\Delta_i = (m_i - A_i m_u)c^2$$

residual between true mass and $Am_{\rm u}$ approximation where: $\Delta(^{12}{\rm C}) = 0$ via $m_{\rm u}$ definition

compare:

$$m(^{238}U) = 221742.9559 \text{ MeV}$$
 (1)
 $\Delta(^{238}U) = 47.3077 \text{ MeV}$ (2)

same information content!

www: Chart of the Nuclides Δ_i entries

[№] Q: what would it mean if all mass defects = 0? Q: mass defects \neq 0 for all but ¹²C–implications??

Nuclear Binding Energy

if nucleons had same mass $m_{\rm u}$ and *did not interact* then pile of A_i nucleons has mass $m_i = A_i m_{\rm u}$ exactly and we'd measure $\Delta_i = 0$ but no interactions = no biding = nucleons would disperse no nuclei would exist! we wouldn't exist! yikes!

Instead **nucleons do interact** via nuclear force!

- bound together in nuclei
- must input energy to rip nuclei apart!

Q: how to quantify binding?

ω

Nuclear Binding Energy

binding energy: energy needed to rip nucleus \rightarrow nucleons

for nuclide *i*, define:

4

$$B_i = \text{parts} - \text{whole} \tag{3}$$

$$= \left(Z_i m_{\mathsf{H}} c^2 + N_i m_n c^2 \right) - m_i c^2 \tag{4}$$

$$= Z_i \Delta_p + N_i \Delta_n - \Delta_i \tag{5}$$

- mass defect Δ_i encodes binding energy B_i
- stability requires $B_i > 0$, i.e., whole < sum of parts (compare hydrogen atom: $m_{\rm H} = m_p + m_e - 13.6 \ {\rm eV}/c^2$)

Binding Energy Patterns

note that larger nuclei have large B_i , but shared among more nucleons

consider: **binding energy per nucleon** B/A*Q: what does this represent physically?*

www: Chart of nuclides B/A patterns? implications?

^o *Q*: what strikes you?

Binding Energy: Trends and Consequences

Overall nuclear binding energy features in Chart of Nuclides:

highest binding along valley of stability
 ⇒ stable isotopes are the most tightly bound

with this in mind, revisit solar abundances:
www: solar system abundances

Q: significance?

~

The Nuclear Fingerprint in Solar Abundances

Many observed features in solar abundances reflect observed features in nuclear binding energy curve

for example:

 ★ D, Li, Be, B are "fragile": weakly bound-low B/A but these also have very low abundances
 ★ binding has broad peak around ⁵⁶Fe

...where abundances show a broad peak

See nuclear binding energy effects in solar system (and stellar) abundances:

 $_{\infty} \Rightarrow$ confirms: abundance pattern controlled by *nuclear physics*!

Nuclei vs Atoms

Useful to compare/contrast nuclear vs atomic interactions and structures

Q: controlling forces/interaction(s) in each?

Q: nuke/atomic similarities?

Q: nuke/atomic differences?

Properties of the Nuclear Force

EM force completely understood

via Maxwell's equations and QED

for static point charges: simple potential V(r) = Q/r

- central force
- always either attractive or repulsive

Nuclear force not fully understood, much more complicated (see, e,g., Krane, *Nuclear Physics*)

- nuclear interaction and nucleons not fundamental but manifestations of strong interactions among quarks analogy: EM force vs molecular interactions
- nucleon-nucleon (N N) potential
- not known from first principles: empirical

10

The Nuclear Force

- •N N interaction *attractive* a "large" distances $\gtrsim 1$ fm, strongly *repulsive* at short distances $\lesssim 1$ fm $\rightarrow 0$ at ~ 1 fm
- N N interaction strongly spin-dependent
 case A = 2: dineutron <u>nn</u> and diproton <u>pp</u> do no exist!
 duetron ²H = d = np exists, but only as
 J = 1 (p ↑ n ↑), not J = 0 (p ↑ n ↓)
 ⇒ have s₁ · s₂ terms in N N potential
- •N N potential has *non-central* "tensor" term anisotropic, angle average = 0
- •N N force *charge symmetric*:

n-n interaction = p-p aside from Coulomb effects

•N - N nearly *charge independent*: $V_{nn} \simeq V_{pp} \simeq V_{np}$

Nuclear Richness = **Complexity** A Look Ahead to Particle Physics

nucleons *not* fundamental particles

but bound states of quarks and gluons

 \Rightarrow nuke force really an interaction among complex objects (baryons, mesons) with substructure

Analogy: Chemistry

ultimately controlled by E&M,

but via *atoms*: many-body quantum structures in principle, can calculate atomic/molecular structure, reactions, scattering *ab initio* but in practice exceedingly difficult. Yet can do chemistry anyway: notice patterns & useful approximations

12

take similar approach to nuke physics.

Mass Formula

goal: understand bulk nature of nuclei binding energy curve, nature of valley of stability

want to know binding energy of nuclides:

$$B(A, N, Z) =? \tag{6}$$

approach: make a rough model of nucleus, use to find functional form; then use mass data to fill in parameters:

"semi-empirical mass formula"

μ

a.k.a., "semi-unbelievable mass formula" (pioneered by on Wiezäcker \rightarrow "wise-acre mass formula")

Binding Energy Bulk Effects: "Liquid Drop Model"

identify binding energy effects:

 $BE(A, N, Z) = E_{vol} + E_{surf} + E_{Coul} + E_{sym} + E_{pair} + E_{shell}$

• volume energy: $E_{\text{vol}} \propto V \propto A$: write $E_{\text{vol}} = b_{\text{vol}}A$; $b_{\text{vol}} \simeq 15.5 \text{ MeV}$ not $E_{\text{vol}} \propto \#$ pairs = $A(A - 1) \sim A^2$ \Rightarrow "saturation" due to short-range nuke force

• surface effect: fewer neighbors to bind with penalty \propto area: $E_{surf} \propto -r^2$ $\rightarrow E_{surf} = -b_{surf} A^{2/3}; \quad b_{surf} \simeq 16.8 \text{ MeV}$

• Coulomb repulsion: reduces binding

$$\stackrel{\nvDash}{=} E_{\text{Coul}} \sim -Z(Z-1)e^2/r$$

$$\rightarrow E_{\text{Coul}} = -b_{\text{C}} Z(Z-1)A^{-1/3}; \quad b_{\text{C}} \simeq 0.72 \text{ MeV}$$

Quantum Effects on Nuclear Binding

liquid drop model ignores quantum effects: *nucleons are Fermions:* Pauli principle applies separately fill neutron and proton states

• Symmetry: Pauli favors filling n and p levels equally optimal for N = Z, so asymmetry penalty: $E_{sym} \propto -|excess| \sim (Z - N)^2/A$ $\Rightarrow E_{sym} = -b_{sym} (Z - N)^2/A; \quad b_{sym} \simeq 23 \text{ MeV}$

•**Pairing:** Pauli \rightarrow identical nucleons pair off with opposite spins

G Q: what are the possibilities? Q: what configurations most favored? least? **Pairing:** separately fill levels for n and p for each nucleon type:

- paired state most tightly bound
- possible if even number of that nucleon type but odd number per type \rightarrow unpaired nucleon

$$E_{\text{pair}} = \begin{cases} +\delta & N \text{ even } -Z \text{ even } (A \text{ even}) \\ 0 & \text{odd-even} & (A \text{ odd}) \\ -\delta & N \text{ odd } -Z \text{ odd} & (A \text{ even}) \end{cases}$$

$$\begin{array}{c} & \bullet \\ & \bullet \\ & &$$

Z even

(7)

where $\delta = b_p A^{-3/4}$; $a_p \sim 34 \text{ MeV}$

consequences:

- (1) stable odd-odd nuclei rare and weakly bound
- (2) odd A less bound than even A
- Q: implications for solar system abundances?
 www: solar system abundances--isotopic, elemental

Nuclear Physics Encoded in Solar Abundances II: The Odd-Even Effect

Recall: plotting abundance vs A

"zig-zag" is odd-even A effect

 \Rightarrow more confirmation that

nuclear physics controls solar abundances

Note: odd-even effect seen in both *elemental* and *isotopic* abundance pattersn But chemistry can only effect elemental patterns → underlying cause is nuclear and not chemical!

Nuclear Shell Model

in atoms:

quantum states \rightarrow electronic shells \rightarrow periodic behavior

for certain "magic Z": closed shell \rightarrow tightly bound electrons

 \Rightarrow unusually stable atoms (e.g., noble gases)

in nuclei:

also quantum states

expect shell behavior, but not necessarily same numerology

for each nucleon:

- (1) approximate force by all other nucleons as a central potential
- (2) Schrödinger's eq. \rightarrow energy levels & occupation numbers
- (3) filled levels \rightarrow closed shell
 - \rightarrow very tight binding
 - occur for special values of N and Z

"magic numbers"

18

www: 3D harmonic oscillator levels and magic numbers magic numbers:

$$\begin{split} Z_{\text{magic}} &= 2, 8, 20, 40, 82 \\ N_{\text{magic}} &= 2, 8, 20, 50, 82, 126 \\ \text{www: solar abundances vs } A \text{ and vs } N \end{split}$$

19

especially stable if doubly magic i.e., both N and Z are magic: ${}^{4}\text{He}$, ${}^{16}\text{O}$, ${}^{40}\text{Ca}$, ${}^{90}\text{Zr}$, ${}^{208}\text{Pb}$

Note: because ⁴He $\equiv \alpha$ doubly magic \rightarrow very tightly bound (1) light nuclei which have N = Z = even are tightly bound " α " nuclei: ¹²C, ¹⁶O, ²⁰Ne, ..., ⁴⁰Ca www: solar system abundances (2) A = 5 and A = 8 unstable: decay to α + nucleon and $\alpha + \alpha$ \rightarrow "mass gaps" at A = 5,8 essential for history of universe

Nuclear Density and Degeneracy

consider nuclear density: empirically-nearly constant for all nuclei number density $n = A/Vol = 0.17 \text{ fm}^{-3}$, or $\rho = M/Vol \simeq 0.2 \text{ GeV fm}^{-3} \simeq 3 \times 10^{14} \text{ g cm}^{-3}$

nucleons are fermions:

must obey Pauli principle \rightarrow important if *degeneracy* occurs but *does* it occur?

Q: how to estimate if nuclei are degenerate?

to test for degeneracy \Rightarrow estimate Fermi energy i.e., energy that nucleon "gas" would have if packed together as much as Pauli allows

if degenerate: $xp_x \sim \hbar$ and also y, z: if packed into length x, minimal momentum is "Fermi momentum" $p_F \sim \hbar/x$

so for nuclus with size $r \sim 1A^{1/3}$ fm (1 fm = 10⁻¹³ cm) Fermi momentum $p_F \sim h/r \sim 2\pi\hbar/r$ Fermi energy $E_F = p_F^2/2m_u \sim 20 - 40 \ A^{-2/3}$ MeV

Q: what should this be compared with? Q: what do we conclude? \mathbb{R}^{N}

compare to actual nuclear energy level spacings www: energy level diagram for $^{12}\mathrm{C}$

we find

$$E_F > E_{\text{nuke level}} \sim 1 \text{ MeV}$$
 (8)
 $E_F > E_{\text{EM}} \sim 1.4Z^2 \text{MeV}/r_{\text{fm}}$ (9)

i.e., typical nucleon energies are *below* Fermi level
$$\Rightarrow$$
 to zeroth order, the nucleus is a degenerate gas of nucleons confined by the strong force

Note: since $n \sim A/r^3 =$ constant, nuclear radius scales as $r \simeq 1.2 A^{1/3}$ fm

23

Tips for PF1 Optional Reading (Asplund et al 2005) Abundance Notation

very commonly used

$$[A/B] \equiv \log_{10} \left[\frac{(A/B)_{\text{observed}}}{(A/B)_{\text{solar system}}} \right]$$
(10)

e.g.,: if a star has $Fe/H_* = 0.01Fe/H_{\odot}$, then $[Fe/H]_* = -2$ note: [A/B] is a *logarithmic* measure of abundance i.e., [A/B] is a "decimal exponent \rightarrow really dimensionless, but "units" sometimes called "dex"

also used

$$[A] = 12 + \log_{10}(A/H) = \log_{10}(10^{12}A/H)$$
(11)

e.g., since $(Fe/H)_{\odot} = 3 \times 10^{-5}$, then [Fe] = 7.5also dimensionless logarithmic measure, "units" sometimes also called "dex"