Astro 596/496 NPA Lecture 5 January 25, 2019

Announcements:

- Preflight 1 due
- Problem Set 1 posted on Compass uses solar system abundance data posted on course links

Last Time: nuclear binding energy

Q: highest B/A? lowest?

Q: implications for solar system abundances?

nuclear masses and structure: liquid drop + quantum effects consider atoms: *Q: implications of shell structure?*

Q: so for nuclei?

 \vdash

Nuclear Shell Model

in atoms:

quantum states \rightarrow electronic shells \rightarrow periodic behavior

for certain "magic Z": closed shell \rightarrow tightly bound electrons

 \Rightarrow unusually stable atoms (e.g., noble gases)

in nuclei:

also quantum states

expect shell behavior, but not necessarily same numerology

for each nucleon:

- (1) approximate force by all other nucleons as a central potential
- (2) Schrödinger's eq. \rightarrow energy levels & occupation numbers
- (3) filled levels \rightarrow closed shell
 - \rightarrow very tight binding

Ν

occur for special values of ${\cal N}$ and ${\cal Z}$

"magic numbers"

www: 3D harmonic oscillator levels and magic numbers magic numbers:

$$\begin{split} Z_{\text{magic}} &= 2, 8, 20, 40, 82 \\ N_{\text{magic}} &= 2, 8, 20, 50, 82, 126 \\ \text{www: solar abundances vs } A \text{ and vs } N \end{split}$$

especially stable if doubly magic i.e., both N and Z are magic: ${}^{4}\text{He}$, ${}^{16}\text{O}$, ${}^{40}\text{Ca}$, ${}^{90}\text{Zr}$, ${}^{208}\text{Pb}$

Note: because ⁴He $\equiv \alpha$ doubly magic \rightarrow very tightly bound (1) light nuclei which have N = Z = even are tightly bound " α " nuclei: ¹²C, ¹⁶O, ²⁰Ne, ..., ⁴⁰Ca www: solar system abundances (2) A = 5 and A = 8 unstable: decay to α + nucleon and $\alpha + \alpha$ \rightarrow "mass gaps" at A = 5, 8 essential for history of universe

Nuclear Decays

Some nuclei unstable "parent" nuclei spontaneously decay to "daughter" nuclei

Alpha Decay

 α alpha decay: release ⁴He = α


```
_{\rm P} example: <sup>238</sup>U\rightarrow <sup>234</sup>Th + \alpha
```

decay via nuclear interaction, nucleons reshuffled

Beta Decay

transformation $(N, Z) \rightarrow (N \mp 1, Z \pm 1) + e + \nu_e$ decay via **weak interaction:** *nucleon type changed,* ν *present*

 β^- example: free neutron decay ouside of a nucleus, free neutrons are unstable! \neg n p e $\overline{\nu}_e$ $n \rightarrow p + e^- + \overline{\nu}_e$ with $\overline{\nu}_e = anti-neutrino$

Beta Decay Varieties

 β^- example: tritium decay ${}^3_2\text{H}^1 \rightarrow {}^3_1\text{He}^2 + e^- + \bar{\nu}_e$ i.e., neutron decay within nucleus

3⁺ example:
$${}^{16}\text{F} \rightarrow {}^{16}\text{O} + e^+ + \nu_e$$

i.e., have $p \rightarrow n + e^+ + \nu_e$

creates positron e^+ and ordinary (non-anti) neutrino

 β -decay variant: electron capture transformation $e^- + (N, Z) \rightarrow (N + 1, Z - 1) + \nu_e$ requires electron, e.g., from innermost atomic orbits ("K-capture") example: ⁷Be + $e^- \rightarrow {}^7\text{Li} + \nu_e$ occurs in early Universe

σ

Gamma Decay

decay via **EM interaction**, (same nucleus)

example: excited
$${}^{26}Mg^* \rightarrow {}^{26}Mg^{g.s.} + \gamma$$

 $E_{\gamma} = E_{\text{excited}} = 1.8 \text{ MeV}$

 \neg

Nuclear Fission

fission: nucleus splits

only occurs for heaviest nuceli-actinides U, Pu daughters have distribution of masses and number www: Chart of Nuclides

- *Q*: which decays change *A*?
- *Q*: which decays change *Z*?

00

Q: chart of nuclides paths for α ? β^- ? β^+ ? fission?

Radioactive Decay Rate

const decay probability P per unit time:

$$\frac{dP}{dt} = \lambda = const \tag{1}$$

and so

$$\frac{dn}{dt} = -n \ \frac{dP}{dt} = -\lambda n \tag{2}$$

decay lifetime ("mean life") $\tau = 1/\lambda$ solution: $n = n_0 e^{-t/\tau}$ also write $n = n_0 2^{-t/t_{1/2}} = n_0 (e^{\ln 2})^{-t/t_{1/2}} = n_0 e^{-t \ln 2/t_{1/2}}$ "half-life" $t_{1/2} = \tau \ln 2$

www: supernova 1987A brightness vs time = ''lightcurve''