Astro 596/496 NPA
 Lecture 8
 February 1, 2019

Announcements:

- Problem Set 1 due today
- Preflight 2 due next Friday
includes crowdsource group discussion and a video to watch and comment!

Last Time: began nuclear reactions
notation: $a(b, c) d Q$: which means?
Q: energy available in a reaction?
ـ Q: how does energy conservation look in a reaction?

Energy Conservation

for reactions and decays total energy is conserved

$$
\begin{equation*}
E_{\text {final }}=E_{\text {initial }} \tag{1}
\end{equation*}
$$

but Einstein says: total energy includes rest mass energy!
example: " 2 to 2 " reaction $a+b \rightarrow c+d$:

$$
\begin{equation*}
\left(m_{c}+m_{d}\right) c^{2}+(K E)_{f}=\left(m_{a}+m_{b}\right) c^{2}+(K E)_{i} \tag{2}
\end{equation*}
$$

where $K E$ is kinetic energy in center of mass
change in kinetic energy:

$$
\begin{equation*}
(K E)_{f}=(K E)_{i}+\left(m_{a}+m_{b}-m_{c}-m_{d}\right) c^{2} \tag{3}
\end{equation*}
$$

Q: implications?

Nuclear Reaction Energy Release Q

reaction kinetic energy change

$$
\begin{equation*}
(K E)_{f}=(K E)_{i}+\left(m_{a}+m_{b}-m_{c}-m_{d}\right) c^{2}=(K E)_{i}+Q \tag{4}
\end{equation*}
$$

with reaction Q value:

$$
\begin{align*}
Q & =\text { initial masses - final masses } \tag{5}\\
& =\left[m_{a}+m_{b}-\left(m_{c}+m_{d}\right)\right] c^{2} \tag{6}\\
& =\Delta_{a}+\Delta_{b}-\Delta_{c}-\Delta_{c} \tag{7}
\end{align*}
$$

where last line uses mass defects \& baryon conservation
exothermic reactions: $Q>0$ (mass energy released) can occur for any $(K E)_{i}$; "forward" reaction endothermic reactions: $Q<0$
need $(K E)_{i}>|Q|$ to go: " reverse" reaction
\Rightarrow there is a "threshold" energy

Reaction Physics

classify reactions according to timescale τ :
Direct: $\tau \simeq t_{\text {cross }}=r_{\text {nuke }} / v$
retain "memory" of initial states
"single step" formation of product
scattered particles most in forward direction
important for high-ish energies $E / A \gtrsim 5 \mathrm{MeV} /$ nucleon
Compound: $\tau \gg$ tcross
"forget" initial state
form intermediate QM state (resonance)
"compound" nucleus $A+b \rightarrow W \rightarrow c+D$
decays into one of several "channels"
final state particles are isotropic

- back to initial state: elastic scattering
- to one or more new states: reaction!
lower energy, more important for most astro apps

Reaction Rates and Cross Sections

Reaction: $a+b \rightarrow c+d$

Consider particle beam:
"projectiles," number density n_{a}
incident $\mathrm{w} /$ velocity v on targets of number density n_{b}

Due to interactions, targets and projectiles "see" each other as spheres of projected area $\sigma(v)$: the

cross section

* fundamental measure interaction strength/probability
* nuke \& particle physics meets astrophysics via σ
G
in time δt, what is avg \# collisions on one target?
Q: what defines "interaction zone" around target?
interaction zone: particles sweep out "scattering tube"
- tube area σ
- length $\delta x=v \delta t$
projectiles
$\longrightarrow v$

scattering tube volume around target:
$\delta V=\sigma \delta x=\sigma v \delta t$
の
collide if a projectile is in the volume

Cross Section, Flux, and Collision Rate

in scattering tube volume $\delta V=\sigma v \delta t$, average number of projectiles in tube $=\mathcal{N}_{\text {proj,tube }}=n_{a} \delta V$ so: average number of collisions in δt :

$$
\begin{equation*}
\delta \mathcal{N}_{\text {coll }}=\mathcal{N}_{\text {proj }, \text { tube }}=n_{\mathrm{a}} \sigma v \delta t \tag{8}
\end{equation*}
$$

so $\delta \mathcal{N}_{\text {coll }} / \delta t$ gives
avg collision rate per target $b \Gamma_{\text {per } b}=n_{a} \sigma_{a b} v=\sigma_{a b} j_{a}$
where $j_{a}=n_{a} v$ is incident flux
$Q: \Gamma$ units? sensible scalings n_{a}, σ, v ? why no n_{b} ?
\checkmark Q: average target collision time interval?
Q: average projectile distance traveled in this time?

Reactions: Characteristic Length and Time Scales

estimate average time between collisions on target b :
mean free time τ
collision rate: $\Gamma=d \mathcal{N}_{\text {coll }} / d t$
so wait time until next collision set by $\delta N_{\text {coll }}=\Gamma_{\text {per } b} \tau=1$:

$$
\begin{equation*}
\tau=\frac{1}{\Gamma_{\operatorname{per} b}}=\frac{1}{n_{a} \sigma v} \tag{10}
\end{equation*}
$$

in this time, projectile a moves distance: mean free path

$$
\begin{equation*}
\ell_{\mathrm{mpf}}=v \tau=\frac{1}{n_{a} \sigma} \tag{11}
\end{equation*}
$$

no explicit v dep, but still $\ell(E) \propto 1 / \sigma(E)$
Q : physically, why the scalings with n, σ ?

Q: what sets σ for billiard balls?
Q : what set σ for $e^{-}+e^{-}$scattering?

Cross Section vs Particle "Size"

if particles interact only by "touching"
(e.g., billiard balls)
then $\sigma \leftrightarrow$ particle radii
but: if interact by force field
(e.g., gravity, EM, nuke, weak)
cross section σ unrelated to physical size!

For example: e^{-}has $r_{e}=0$ (as far as we know!)
but electrons scatter via Coulomb (and weak) interaction "touch-free scattering"
\bullet
Q: what is collision or reaction rate per volume?
Q : what is collision rate per projectile a ?

Reaction Rate Per Volume

recall: collision rate per target b is $\Gamma_{\text {per } b}=n_{a} \sigma_{a b} v$ total collision rate per unit volume is

$$
\begin{equation*}
r_{a b}=\frac{d n_{\mathrm{coll}}}{d t}=\Gamma_{\text {per } b} n_{b}=\frac{1}{1+\delta_{a b}} n_{a} n_{b} \sigma v \tag{12}
\end{equation*}
$$

Kronecker $\delta_{a b}$: 0 unless particles $a \& b$ identical
Note: symmetric w.r.t. the two particles
collision rate per projectile a :

$$
\begin{equation*}
\Gamma_{\text {per } a}=\frac{r_{a b}}{n_{a}}=\frac{1}{1+\delta_{a b}} n_{b} \sigma v \tag{13}
\end{equation*}
$$

Note: in general $\Gamma_{\text {per } a} \neq \Gamma_{\text {per } b}$! Q: what's going on?

What if particles have more than one relative velocity?

Reaction Rates: Velocity Distributions

If $v \in$ distribution, rates is average over velocities:

$$
\begin{equation*}
\langle r\rangle=\left\langle n_{1} n_{2} \sigma v\right\rangle \tag{14}
\end{equation*}
$$

where $\langle\cdots\rangle$ is avg over relative velocities
given $n_{i}=\int d^{3} \vec{v} f_{i}(\vec{v})$,
i.e., $f(v)$ is the velocity distribution of i
and $v_{\text {rel }}=\left|\vec{v}_{2}-\vec{v}_{1}\right|$

$$
\begin{equation*}
\langle r\rangle=\int d^{3} \overrightarrow{v_{1}} \int d^{3} \overrightarrow{v_{2}} f\left(\vec{v}_{1}\right) f\left(\vec{v}_{2}\right) \sigma\left(v_{\text {rel }}\right) v_{\text {rel }} \tag{15}
\end{equation*}
$$

\sharp Q: (astro)physically relevant velocity distribution(s)?

Thermal Velocity Distribution

Important special case: Non-Relativistic, dilute gas
\rightarrow distribution $f(\vec{v})$ is Maxwell-Boltzmann
at temperature T

$$
\begin{equation*}
f_{\mathrm{MB}}(\vec{v}) d^{3} \vec{v}=n\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \exp \left(-\frac{m v^{2}}{2 k T}\right)\left(4 \pi v^{2} d v\right) \tag{16}
\end{equation*}
$$

a Gaussian in velocity

So: $r=\int$ gaussian $_{1} \times$ gaussian $_{2}$
can show: this reducesto one Gaussian
in relative velocity:

$$
\begin{equation*}
\langle r\rangle=n_{1} n_{2}\langle\sigma v\rangle \tag{17}
\end{equation*}
$$

Thermonuclear Reaction Rates

thermal reaction rate coefficient:
average over relative v and reduced mass μ

$$
\begin{aligned}
\langle\sigma v\rangle & =\left(\frac{\mu}{2 \pi k T}\right)^{3 / 2} \int d^{3} \vec{v} v \sigma(v) e^{-\mu v^{2} / 2 k T} \\
& =\sqrt{\frac{8}{\pi \mu}} \frac{1}{(k T)^{3 / 2}} \int_{0}^{\infty} d E E \sigma(E) e^{-E / k T}
\end{aligned}
$$

"thermonuclear" reaction rate

Q: physical significance?
Q: expected behavior at high T? Iow T?

Thermal Reaction Rates

for nonrelativistic particles a, b at temperature T the rate of reaction $a b \rightarrow c d$ per volume is

$$
\begin{equation*}
r_{a b}(t)=n_{a} n_{b}\left\langle\sigma_{a b \rightarrow c d} v\right\rangle_{T}=\Gamma_{\operatorname{per} a}(T) n_{b}=\Gamma_{\operatorname{per} b}(T) n_{a} \tag{18}
\end{equation*}
$$

with thermal reaction rate coefficient

$$
\begin{equation*}
\left\langle\sigma_{a b \rightarrow c d} v\right\rangle_{T}=\sqrt{\frac{8}{\pi \mu}} \frac{1}{(k T)^{3 / 2}} \int_{0}^{\infty} d E E \sigma_{a b \rightarrow c d}(E) e^{-E / k T} \tag{19}
\end{equation*}
$$

$e^{-E / k T}$ factor suppresses $E \gtrsim k T$
consider neutron-nucleus reactions: $a=n b=A$
for exothermic reaction, at low energy: $\sigma_{n b \rightarrow c d} \propto 1 / v$
Q: implications?
$\stackrel{\rightharpoonup}{\perp}$ contrast proton reactions: $a=p b=A$
Q: how are things different?

Neutron vs Charged Particle Reactions

neutrons: no Coulomb barrier with nucleus

- low v : de Broglie $\lambda_{n}=h / m_{n} v$ increases-n looks "big"!
- and when $\sigma \propto 1 / v: \quad \sigma v=\langle\sigma v\rangle_{T}$ is constant! neutron reaction rates depend weakly on temperature!
protons: Coulomb barrier strong!
$E_{C}=Z_{1} Z_{2} e^{2} / r=Z_{1} Z_{2} 1.44 \mathrm{MeV}(1 \mathrm{fm} / r)$
Classically, need $\gtrsim 1 \mathrm{MeV}$ to overcome barrier
charged particle reaction rates depend strongly on temperature!
example: for temperatures like those of center of Sun:
$k T=0.86 \mathrm{keV}\left(T / 10^{7} \mathrm{~K}\right) \ll E_{C}$
in Q : What does this seem to imply?
Q: What's the flaw?

Quantum Mechanics to the Rescure

classically: Coulomb forbid charged particle reactions in Sun but nuclei are quantum particles \rightarrow can tunnel
recall: tunneling under a uniform 1D potential $V(x)=V_{0}$ by particle with energy $<V_{0}$:

- wavefunction $\psi(x)=\psi_{0} e^{-k x}$ depth scale $k^{2}=2 m\left(V_{0}-E\right) / \hbar^{2}$ depends on V_{0}
- penetration probabilty $P(x)=\|\psi\|^{2}=P_{0} e^{-2 k x}$

Probability to tunnel under Coulomb barrier:

- depth $k^{2} \rightarrow k^{2}(r)=2 m[V(r)-E] / \hbar^{2}$
- wavefunction $e^{-k x} \rightarrow e^{-\int k(r) d r}$

PS2: show that

$$
\begin{equation*}
P \propto e^{-2 \pi Z_{1} Z_{2} e^{2} / \hbar v}=e^{-b E^{-1 / 2}} \tag{20}
\end{equation*}
$$

Q: behavior?

