Astro 596/496 NPA Lecture 11 February 11, 2019

Announcements:

• Problem Set 2 due Friday

Q1(a): consider a classical particle with reduced mass μ and total energy *E*

in a Coulomb potential $V_{\rm C}(r) = Z_1 Z_2 e^2 / r$

"turnaround radius" is closest approach

Last time: began cosmology

Cosmological Principle *Q: what's that? who so powerful?* cosmic kinematics

- • redshift *z Q*: *definition*? *units*? *sign*?
 - *Q*: galaxy redshift vs blueshift percentages?

Cosmic Kinematics

1920's: Hubble, Slipher: all galaxies' spectral lines shifted:

- galaxies move relative to us!
- essentially all galaxies show shift to red:

 $\lambda_{obs} > \lambda_{lab} = \lambda_{rest}$

Define: redshift

$$z = \frac{\Delta\lambda}{\lambda} = \frac{\lambda_{\rm obs} - \lambda_{\rm emit}}{\lambda_{\rm emit}}$$
(1)

if interpret as Doppler (for non-relativistic $v \ll c$, $z \ll 1$)

 $v \approx cz$

Edwin Hubble (1929) www: Hubble PNAS paper www: original, old-school Hubble diagram *speed-distance correlation: linear*

$v \propto r$

(2)

Hubble: v = Kr

but isotropy implies Q: what?

Hubble's Law

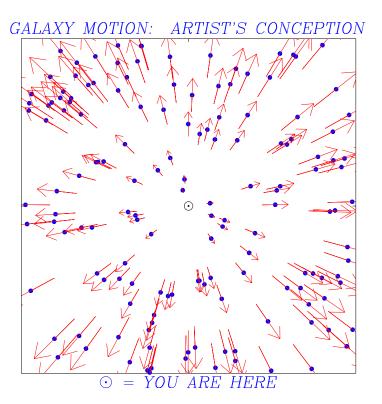
Hubble: v = Krisotropy \Rightarrow same K in all directions modern: Hubble's Law

$$\vec{v} = H\vec{r} \tag{3}$$

Q: sketch?

at present: time t_0 ("sub-0 = today") measure

$$H_0 \equiv H(t_0) = 70 \pm 3 \text{ km s}^{-1} \text{ Mpc}^{-1}$$
 (4)


Hubble parameter or Hubble "constant" Q: why scare quotes?
▶ Q: what are dimensions of H?

Structure + Dynamics: Evolution

observe:

- U. homogeneous, isotropic
- Hubble law $\vec{v} = H\vec{r}$

Q: restate in simple language?

Q: how reconcile? at least 2 logical possibilities...

СЛ

1. "Egoist" interpretation: we are at the center of U.

imagine: **explosion** at t = 0, centered on us at r = 0

- galaxies fly away with uniform distribution of speeds $v_{\rm gal}$
- after explosion: coast as free particle then $r_{gal} = v_{gal}t_{today}$ fastest \rightarrow farthest! \triangleright so $v_{gal} = r_{gal}/t_{today} \equiv H_0 r_{gal} \propto r_{gal}$: recover Hubble's law!

can say more! *Q: age of universe in this model? Q: maximum distance of debris? implications?*

Characteristic Cosmic Scales

in "explosion model" can calculate age of Universe as $t_{today} = t_0 = t_H = 1/H_0 = 14 \times 10^9 \text{ yr} = 14 \text{ Gyr}$ ago **"Hubble time"** useful timescale even to non-egoists! sets scale of ~ "expansion age" of U

limiting speed: c

fastest explosion debris goes farthest $v_{max} = c = Hr_{max}$ at characteristic distance: "Hubble length"

$$r_{\max} = d_H = \frac{c}{H_0} = ct_H = 4200 \text{ Mpc}$$
 (5)

useful lengthscale even to non-egoists!

 \neg sets \sim size of *observable* U

Egoist/Explosion Model (Milne 1933) is logically possible! But...

Q: give a philosophical reason why we don't believe this?

Q: give a physical reason why this treatment can't be right?

Q: give an observational reason why we don't believe this?

Critiques of Cosmic Egoism

We are at the center of the universe?

Philosophically:

• not Copernican ("principle of mediocrity")

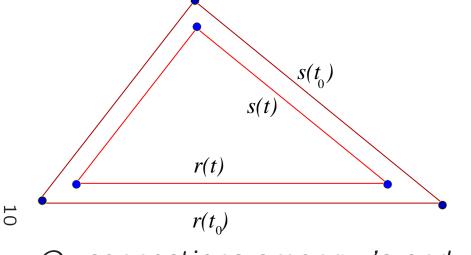
Physically:

• haven't included gravity!

Observationally:

• Milky Way and nearby galaxies don't look special not what expect from center of explosion compare supernova \rightarrow neutron star, black hole

9


 \dots yet v pattern makes us look special \dots

Cosmo Principle Constrains Kinematics

consider arbitrary triangle defined by 3 observers at t_0 Hubble law \rightarrow observers in relative motion \rightarrow at later time t, larger triangle

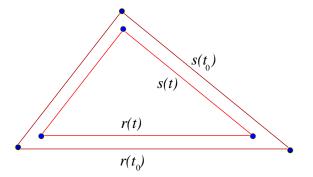
the claim:

later Δ always similar to original Δ Q: what are similar triangles? Q: why must similarity hold?

Q: connections among r's and s's?

similar: triangle angles preserved ⇒ side ratios preserved,

so must have


$$\frac{r(t)}{r(t_0)} = \frac{s(t)}{s(t_0)}$$

holds for any triangle,

so side *length ratio depends only on time t*:

$$a(t) = \frac{r(t)}{r(t_0)} = \frac{s(t)}{s(t_0)}$$

Q: what does this imply about cosmic kinematics?

We have shown:

Cosmo Principle demands any length r(t) evolves as

$$r(t) \propto a(t)$$
 (6)

and so without loss of generality we may write

$$r(t) = a(t) r_0 \tag{7}$$

where we choose $a(t_0) = 1$ today, and $r_0 = r(t_0)$ is *present value* of length ("comoving coordinate")

a(t) must be universal cosmic scale factor can depend only on time and at any t: a has same value everywhere in space

☆ This is huge!
Q: why? What have we proven? What is character of motion?

The Cosmic Scale Factor

We have shown: Cosmo Principle demands for two "particles" (possibly Galaxies!) distance evolves according to

$$\vec{\ell}(t) = \begin{array}{c} a(t) & \vec{\ell}_{0} \\ \text{scale factor present distance} \\ time varying fixed once and for all \end{array}$$

(8)

where we are free to choose $a(t_0) = 1$ today, and $\ell_0 = \ell(t_0)$ is present value ("comoving coordinate")

a(t) must be universal scale factor can depend only on time but at any t same value everywhere in space

This is huge! Q: why? What have we proven? What is character of motion?

Cosmic Expansion

the meaning of Hubble Law: Take 2

2. Einstein interpretation:

will see: General Relativity + Cosmo Principle demand

Universe is expanding

all galaxies receding from all others bold, strange idea!

Q: consistency check–what must expansion explain?

Expansion: Einstein \rightarrow Hubble

www: expanding universe animation

for two arbitrary observers (e.g., "galaxies") scale factor gives distances $\vec{r}(t) = \vec{r}_0 a(t)$ so velocity is: note: "overdot" is time deriv $\dot{x} \equiv dx/dt$

$$\vec{v}(t) = \frac{d\vec{r}}{dt} \equiv \dot{\vec{r}} = \vec{r}_0 \dot{a} = \frac{\dot{a}}{a} \ a\vec{r}_0 \equiv H(t) \ \vec{r}(t)$$
(9)

 \Rightarrow Hubble law!

now interpret "Hubble parameter" as expansion rate $H(t) \equiv \dot{a}/a$

15

we have shown:

if A sees Hubble's law, then so do (arbitrary) B and C thus: if any observer measure Hubble's law then all observers will measure Hubble's law!

so: Hubble law implies

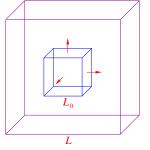
 \rightarrow all galaxies recede according to same law

 \rightarrow no need for center, space has no special points

Moreover: Hubble law is *only* motion which preserves homogeneity and isotropy i.e., *any* other motion breaks cosmo principle ...but Hubble law is exactly what's observed!

 $\stackrel{\text{\tiny b}}{=}$ Q: implications-present, past, future values for a?

present: at t_0 , a(t) = 1expanding, so


past: a(t) < 1future: a(t) > 1

e.g., at some time in past a = 1/2"galaxies twice as close"

Q: how do cosmic volumes depend on a? e.g., Q: when a = 1/2?

Expansion and Areas, Volumes

consider a cube, galaxies at corners present side length L_0 at any time: length $L(t) = a(t) L_0$

cube is "comoving" w/ expansion

- volume $V = L^3 = L_0^3 a^3 = V_0 a^3$, thus $V \propto a^3$
- area of a side: $A = L^2 = A_0 a^2$, thus $A \propto a^2$

www: raisin cake analogy

 $\stackrel{\leftrightarrow}{\infty}$ www: balloon analogy

Q: what is tricky, imperfect about each analogy?

Cosmic Expansion and Cosmic Contents

Looking ahead: n and p are examples of **baryons** assign baryon numbers $B_n = B_p = +1$ and $B_e = B_\gamma = B_\nu = 0$ *baryon number is conserved* in strong/weak/EM reactions: *initial* $\sum_i B_i = \sum_f B_f$ *final*

usually this means: total nucleon number conserved

Q: cosmic baryon number density n_{B} dependence on *a*?

Q: nonrelativistic mass ("matter") density ρ_M dependence on *a*? *Q:* implications for early universe?

19

```
baryon number is conserved
```

...except at *very* high energies/early times? so in some volume V:

baryon number $N_{\mathsf{B}} = n_{\mathsf{B}}V = const$ fixed but $V \propto a^3$, so: $n_{\rm B} \propto a^{-3}$

similarly, in nonrelativistic limit: energy conservation \rightarrow mass conservation $\Rightarrow | \rho_{M} \propto a^{-3}$

definition: to cosmologist, matter \equiv non-relativistic matter today: $\rho_{matter}(t_0) \equiv \rho_{M,0}$ at other epochs (while still non-relativistic): $\rho_{\rm M} = \rho_{\rm M,0} a^{-3}$

in Early U: high densities \rightarrow high reaction rates \rightarrow processes which are unimportant (slow) now could have been fast

20 Q: what about expansion effect on relativistic particles-e.g., photons?

More Formally, for the GR Cognescenti

relativistic "interval" between nearby "fundamental observers" $s = (t, \vec{x}) = (t, r, \theta, \phi)$ and $s' = s + ds = s + (dt, d\vec{x}) = s + (dt, dr, d\theta, d\phi)$: Roberson-Walker line element:

$$ds^{2} = dt^{2} - a(t)^{2} dx^{2}$$

= $dt^{2} - a(t)^{2} \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2} (d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right]$

 \vec{x} is fixed, time-indep comoving coord

- 1. any FO has fixed comoving coords: $d\vec{x}_{fo} = 0$ \Rightarrow FO time elaspes as ds = dt: $\Rightarrow t$ is cosmic time
- ^N 1. two nearby FO at same t (dt = 0): separated by physical distanc $d\ell = a(t)dx$ \Rightarrow cosmic distances $\ell(t) = a(t)x$