Astro 596/496 NPA Lecture 12 February 13, 2019

Announcements:

- Problem Set 2 due Friday
- Office Hours right after class, or by appointment

Last time:

- Hubble's Law *Q: namely? characteristic scales?*
- cosmic scale factor a(t)

Q: what is it? physical significance? units? value today?

- www: expansion animation
- *Q*: connection between *a* and Hubble's law?

cosmic lengths evolve according to

 $\vec{\ell}(t) = \begin{array}{c} a(t) & \vec{\ell}_{0} \\ \text{scale factor present distance} \\ time varying fixed once and for all \end{array}$ (1)

where we are free to choose $a(t_0) = 1$ today, and $\ell_0 = \ell(t_0)$ is present value ("comoving coordinate")

leads to

Ν

$$\vec{v}(t) = \frac{d\vec{r}}{dt} \equiv \dot{\vec{r}} = \vec{r}_0 \dot{a} = \frac{\dot{a}}{a} \ a\vec{r}_0 \equiv H(t) \ \vec{r}(t)$$
(2)

⇒ Hubble law! now interpret "Hubble parameter" as expansion rate $H(t) \equiv \dot{a}/a$

Redshifts

quick-n-dirty: wavelengths are lengths! ...it's right there in the name! \rightarrow expansion stretches photon $\lambda \Rightarrow \lambda \propto a$

if *emit* photon at t_{em} , then at later times

$$\lambda(t) = \lambda_{\text{emit}} \frac{a(t)}{a(t_{\text{em}})} \tag{3}$$

if observe today at t_0

$$\lambda_{\text{obs}} = \lambda(t_0) = \frac{\lambda_{\text{em}}}{a_{\text{em}}}$$
 (4)

measure redshift today:

$$z = \frac{\lambda_{obs} - \lambda_{em}}{\lambda_{em}} = \frac{1}{a_{em}} - 1 \Rightarrow a_{em} = a(z) = \frac{1}{1+z}$$

ω

Scale factor \leftrightarrow redshift

4

$$a = \frac{1}{\frac{1+z}{1+z}}$$
$$z = \frac{1}{a} - 1$$

Example: highest spectroscopically confirmed redshift GN-z11 galaxy with $z = 11.09^{+0.08}_{-0.12}!$ www: GN-z11 recordholder

For this galaxy: \rightarrow scale factor a = 1/(1 + 11.1) = 0.083 *interparticle (intergalactic) distances 8.3% of today!* \rightarrow galaxies 1+11.1=12.1 times closer *squeezed into volumes* (12.1)³ = 1770 *times smaller!*

Q: expansion effect on photon energies?

Redshifts and Photon Energies

in **photon** picture of light: $E_{\gamma} = hc/\lambda$

so in cosmological context photons have

$$E_{\gamma} \propto \frac{1}{a}$$
 (5)

photon energy decreases ("redshifts") with cosmic expansion

Consequences:

- \triangleright Q: photon energy density $\varepsilon(a)$?
- ▷ if thermal radiation,

Q: $T \leftrightarrow \lambda$ connection?

 σ Q: expansion effect on T?

Relativistic Species

Photon energy density: $\varepsilon = E_{\gamma} n_{\gamma}$ avg photon energy: $E_{\gamma} \propto a^{-1}$ photon number density: conserved $n_{\gamma} \propto a^{-3}$ (if no emission/absorption) \Rightarrow for relativistic species \equiv radiation $\varepsilon_{rad} \propto a^{-4}$

Thermal (blackbody) radiation: Wien's law: $T \propto 1/\lambda_{max}$ but since $\lambda \propto a \rightarrow$ then $\boxed{T \propto 1/a}$

Consequences:

- $\varepsilon_{\rm rad} \propto T^4$: Boltzmann/Planck!
- T decreases with time \rightarrow U cools as it expands! today: CMB $T_0 = 2.725 \pm 0.001$ K

distant but "garden variety" quasar: z = 3"feels" T = 8 K (effect observed!)

σ

Cosmodynamics

a(t) gives expansion history of the Universe which in turn tells how densities, temperatures change \rightarrow given a(t) can recover all of cosmic history!

but...

How do we know a(t)? Q: What controls how scale factor a(t) grow with time?

Cosmodynamics Computed

cosmic dynamics is evolution of a system which is

- gravitating
- homogeneous
- isotropic

Complete, correct treatment: General Relativity

 \rightarrow take GR! ...or Cosmology next semester

quick 'n dirty: Non-relativistic (Newtonian) cosmology pro: gives intuition, and right answer ocon: involves some ad hoc assumptions only justified by GR Inputs:

- arbitrary cosmic time t
- cosmic mass density $\rho(t)$, spatially uniform
- cosmic pressure P(t): in general, comes with matter but for non-relativistic matter, P not important source of energy and thus mass ($E = mc^2$) and thus gravity so ignore: take P = 0 for now (really: $P \ll \rho c^2$)

thus: *gravity is only force* all cosmic matter is in "*free fall*" Construction: pick arbitrary point $\vec{r}_{center} = 0$, surround by comoving sphere, radius r(t)that moves in order to always enclose some arbitrary but fixed mass

$$M(r) = \frac{4\pi}{3} r^3 \rho = const$$

(6)

consider a point on the sphere Q: is it accelerated? Q: what is $\ddot{\vec{r}} = ?$

Newtonian Cosmodynamics

a point on the sphere feels acceleration

$$\ddot{\vec{r}} = \vec{g} = -\frac{GM}{r^2}\hat{r}$$
⁽⁷⁾

with pressure P = 0

multiply by $\dot{\vec{r}}$ and integrate:

$$\dot{\vec{r}} \cdot \frac{d}{dt} \dot{\vec{r}} = -GM \frac{\hat{\vec{r}} \cdot d\vec{r}/dt}{r^2}$$
(8)

$$\frac{1}{2}\dot{r}^2 = \frac{GM}{r} + K = \frac{4\pi}{3}G\rho r^2 + K$$
(9)

Q: physical significance of K? of it's sign? $\stackrel{\square}{=}$ Q: what happens when we introduce scale factor?

Friedmann (Energy) Equation

introduce scale factor: $\vec{r}(t) = a(t)\vec{r}_0$

"energy" eqn: Friedmann eq.

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi}{3}G\rho - \frac{\kappa c^{2}}{R^{2}a^{2}}$$
(10)

full GR gives $K = r_0^2 (\kappa c^2 / R^2)$

curvature term with parameters

• κ sets cosmic geometry

 $\kappa = 0$: "flat" Euclidean geometry

 $\kappa = +1$: positively curved "spherical" geometry

 $\kappa = -1$: negatively curved "hyperbolic" geometry

• const R is lengthscale: "curvature" of U.

12

www: cosmic geometries

Relativistic Gravitation

Einstein:

- mass and energy are equivalent $E = mc^2$
- mass is source of gravity
- so energy is also source of gravity

for each cosmic component or "species" i, with energy density ε_i equivalent mass density given by $\rho_i c^2 = \varepsilon_i$

total mass-energy density is

$$\rho = \sum_{i} \rho_{i} = \sum_{i} \frac{\varepsilon_{i}}{c^{2}} \tag{11}$$

13

this is what enters into Friedmann

The Mighty Friedmann (Energy) Equation

fundamental equation of the Standard Cosmology:

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho - \frac{\kappa c^2}{R^2 a^2}$$
(12)

Q: why is it so important?

Q: what's a variable? Q: what's a parameter?

Dissecting Friedmann

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi}{3}G\rho - \frac{\kappa c^{2}}{R^{2}a^{2}}$$
(13)

variables change with time

- *a*: cosmic scale factor
- ρ : total cosmic mass-energy density
- parameters constant, fixed for all time
 - $\kappa = \pm 1$ or 0: sign of "energy" (curvature) term
 - *R*: characteristic lengthscale, $GR \rightarrow curvature$ scale
- Q: how does expansion of U depend on contents of U? Q: how does expansion of U not depend on contents of U?

15

Q: what about acceleration $-\ddot{a}$?

Friedmann Acceleration Equation

Newtonian analysis gives \ddot{a} for $P \rightarrow 0$ In full GR: with $P \neq 0$, get Friedmann acceleration eq.

$$\frac{\ddot{a}}{a} = -\frac{4\pi}{3}G(\rho + 3P/c^2)$$

(14)

Pressure and Friedmann

- \star in "energy" (*a*) eq.: *P* absent, even in full GR
- ★ in acceleration eq., $GR \rightarrow P$ present, same sign as ρ adds to "active gravitational mass" *Q: why? Q: contrast with hydrostatic equilibrium?*

Friedmann energy eq is "equation of motion" for scale factor

i.e., governs evolution of a(t).

To solve, need to know:

• is there curvature?
$$\leftrightarrow$$
 is $\kappa = 0, 1, -1$?

• ρ dependence on a

16

Worked Example: An Empty Universe

consider an "empty" universe: • $\rho = 0$, or really $G\rho \ll c^2/R^2a^2$

• $\kappa = -1$ Q: why?

Friedmann is nontrivial:

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{c^{2}}{R^{2}a^{2}}$$
(15)

solve:

$$\frac{\dot{a}}{a} = \frac{c}{Ra}$$
(16)
$$a(t) = \frac{ct}{R}$$
(17)

Q: sketch a(t) for this model? physical interpretation? fate?

imagine we live in such a universe, and measure H_0 \bigtriangledown Q: what is R? t_0 ? H(t)? \ddot{a} ?

An Empty Universe is a Coasting Universe

for an "empty", negatively curved universe Friedmann: $H^2 = (\dot{a}/a)^2 = c^2/R^2a^2$ evaluate today when $a_0 = 1$: $H_0 = c/R$ so curvature radius $R = c/H_0 = d_{\rm H}$: Hubble length!

Friedmann solution:

18

$$a(t) = \frac{ct}{R} = H_0 t = \frac{t}{t_0}$$
(18)

- fate: as $t \to \infty$, scale factor $a \to \infty$ expand forever!
- again $a_0 = 1$ gives age $t_0 = H_0^{-1}$: Hubble time!
- H(t) = \alpha/a = 1/t: rate slow with time
 so v = r/t: this is the Milne (explosion) universe!
- $\ddot{a} = 0$: zero acceleration "coasting" cosmology

Q: a(t) with matter added? How to add matter? radiation?