Astro 596/496 NPA Lecture 15 February 20, 2019

Announcements:

Preflight 3 due Friday
 Part (a) is individual
 Part (b) is group discussion of alternate universe

Last time: cosmic contents and the Early Universe

- *Q*: what dominates cosmic expansion at late times? why?
- Q: early times?
- Y. Zel'dovich:

"The Universe is the poor [wo]man's accelerator."

← Q: in what sense is this true? opportunities? challenges?

Particle Physics: Conservation Laws, Take I

Rules for transitions from initial to final states \Rightarrow scattering, reactions, decays

 total energy and momentum (i.e., 4-momentum) is conserved

use relativistic definitions, e.g., include rest mass; then

$$\sum E_i = \sum E_f$$

$$\sum \vec{p_i} = \sum \vec{p_f}$$

e.g., $n \rightarrow \nu \otimes \dots$ since $m_n \neq m_{\nu}$

• electric charge: $\sum Q_i = \sum Q_f$

 $_{\scriptscriptstyle \rm N}$ e.g., $p+p{\rightarrow}p+n$ \otimes

• **baryon number**: so far, *baryon* = n or p

$$B(n) = B(p) = +1$$

$$B(\bar{n}) = B(\bar{p}) = -1$$

for nucleus, $B_i = A_i \Rightarrow n_{B,i} = A_i n_i$
conservation: $\sum B_i = \sum B_f$
e.g., $p + p \rightarrow p + p + n \otimes$
but $p + p \rightarrow p + p + p + \bar{p} \ OK$

• lepton number: so far, lepton = e or ν_e

$$L(e^{-}) = L(\nu_e) = +1$$

 $L(e^{+}) = L(\bar{\nu}_e) = -1$

conserved in Weak interaction: reactions obey $\sum L_i = \sum L_f$ check: $n \rightarrow p + e^- + \nu_e \otimes$ $n \rightarrow p + e^- + \bar{\nu}_e \text{ OK}$ $\omega \ e^+e^- \rightarrow \nu_e \otimes$ $e^+e^- \rightarrow \nu_e \bar{\nu}_e \text{ OK}$

Conservation Laws and Particle Interactions

"Everything not forbidden is compulsory" – Murray Gell-Man

any reactions and decays obeying all conservation laws *must* have nonzero probability to occur but that probability (cross section/lifetime) may be small

for all reactions and decays $i \rightarrow f$, define Q value

$$Q = \sum_{i} m_i c^2 - \sum_{f} m_f c^2 \tag{1}$$

reactions: ≥ 2 bodies $\rightarrow \geq 2$ bodies exothermic if Q > 0, min "threshold" energy if Q < 0

[▶] decays: 1 body $\rightarrow \geq 2$ bodies *Q*: why? can only occur if *Q* > 0 *Q*: why? but if *Q* > 0 channel exists, decay will happen

BIG BANG NUCLEOSYNTHESIS

Gateway to the Early Universe

Big Bang Nucleosynthesis: Introduction

(Kolb & Turner Ch. 4; Olive, Steigman & Walker; BDF)

Big Bang Nucleosynthesis = BBN = Primordial nucleosynthesis

Basic idea:

follow weak, nuke reactions in expanding universe initially: nuclei "ionized" to n, p only when T low enough: $n, p \rightarrow$ "ground state"

To get in mood:

- What is appropriate T(E) scale for nuclear "recombination"?
- At this T, what is non-rel, rel?
- U. expansion is dominated by?

σ

Big Bang Nucleosynthesis Stage: Early Universe

BBN energy scale for nuclear "recombination:" when $T \sim$ nuke binding— ~ 1 MeV

BBN epoch: for $T \sim 1$ MeV $\sim 10^{10}$ K

- scale factor $a \sim 10^{-10}$ (!)
- redshift $z \sim 10^{10} \gg z_{eq} \sim 10^4$: much before matter/rad eq \Rightarrow universe is deep in *radiation-dominated era*

note this is consistent with your PS2 lower limit!

At these temperatures:

 $\overline{}$

- What particles alive? decayed?
- What is role of dark matter, cosmo constant?

BBN Actors: Nucleons, Pairs, and Neutrinos

since $T \gtrsim 1$ MeV > m_e , pairs e^{\pm} abundant & relativistic!

- "radiation" species: $\gamma, e^{\pm}, \nu \overline{\nu}$
- "matter" species: $m_n, m_p \gg T$: neutrons, protons non-relativistic
- dark matter, cosmo constant (dark energy) presumably present but we assume non-interacting, and unimportant
 but maybe not! can see what happens if so, and probe DM/DE!

Abundance evolution:

- While nuclei "ionized," is *n* or *p* more abundant?
- When "recombine," what is "ground state"?

when only n, p: expect roughly similar abundances but: since $m_n > m_p$, higher "cost" for neutrons \rightarrow should have n/p < 1: neutrons less abundant

when T low enough, $n, p \rightarrow$ "nuclear ground state": set by *maximum available binding energy*

- *globally*, max B/A for ⁵⁶Fe, but not enough time to reach this state
- among lightest nuclides, max B/A at ⁴He \rightarrow highest binding energy of light nuclei

so when light nuclei form, final products = **primordial nuclides**:

- ${}^{4}\text{He}=2p2n$: limited by the available n
- H: leftover "unpartnered" p but incomplete nuke "burning" leaves
- traces of D, ³He, ⁷Li

Q

That's it! But now the job is: understand BBN in detail *Q: what is needed to calculate abundance changes vs time*

BBN Prologue: Densities and Temperatures

to understand BBN, we will need :

• reaction rates per species $i = n, p, d, {}^{3}\text{He}, ...$

$$\Gamma_{\text{per}\,i}(ij \to k\ell) = n_j \langle \sigma_{ij \to k\ell} v \rangle$$

as well as lab-measured decay rates for radioactive nuclei

cosmic expansion rate

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 \approx \frac{8\pi G}{3}\rho_{\rm rad}$$

thus we need for all times and thus temperatures T(a)

- particle number densities $n_i(T)$
- the total cosmic radiation energy density $\varepsilon_{\rm rad}(T) = \rho_{\rm rad}c^2$

for all species, relativistic and non-relativistic

10

Statistical Mechanics: Dimensional Analysis

consider a *thermal bath* of *ultra-relativistic bosons* b

- temperature T
- particle mass $m_b c^2 \ll kT$
- equal numbers of b and \overline{b} (or $b = \overline{b}$)

i.e., no net b abundance, which means $|\mu_b|/T \ll \mathbf{1}$

full derivation: Director's Cut Extras – check it out! quick and dirty: *dimensional analysis*

Ultra-Relativistic Dimensional Analysis

for a relativistic boson species at T, we want:

- number density *n*_b
- energy density ε_b
- pressure P_b

scales in the problem:

- kT, but not $m_b \ll T$
- QM relevant: \hbar
- special relativity relevant: c

Q: how to construct number density n_b , ε_b , P? Hint: $\hbar c \approx 200$ MeV fm has dimensions [energy × length] \dddot{h} Hint: you already know the answer for a famous boson! Q: which one? does dimensional analysis work?

Ultra-Relativistic Thermal Particles

dimensional analysis: kT, \hbar , c form one length

$$\ell = \frac{\hbar c}{kT} = \frac{\hbar}{p_T} \tag{2}$$

the thermal de Broglie length

from this we estimate **number density**

$$n \sim \ell^{-3} \sim \left(\frac{kT}{\hbar c}\right)^3$$
 (3)

energy density

13

$$\varepsilon \sim kT\ell^{-3} \sim \frac{(kT)^4}{(\hbar c^3)}$$
 (4)

pressure has dimensions of energy density, so

$$P \sim \varepsilon$$
 (5)

of course we know thermal photons result: blackbody radiation!

Ultra-Relativistic Thermal Bosons: Exact Results

for boson species with g internal states (helicity etc)

$$n_{\text{rel,b}} = \frac{g}{2\pi^{2}\hbar^{3}c^{3}} \int_{0}^{\infty} dE \frac{E^{2}}{e^{E/kT} - 1}$$

$$= g \frac{\zeta(3)}{\pi^{2}} \left(\frac{kT}{\hbar c}\right)^{3} \propto T^{3} \qquad (6)$$

$$p_{\text{rel,b}}c^{2} = \frac{g}{2\pi^{2}\hbar^{3}c^{3}} \int_{0}^{\infty} dE \frac{E^{3}}{e^{E/kT} - 1}$$

$$= g \frac{\pi^{2}}{30} \frac{(kT)^{4}}{(\hbar c)^{3}} \propto T^{4} \qquad (7)$$

where

$$\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3} = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \dots = 1.20206\dots$$
 (8)

^{\ddagger} photons: g = 2 polarizations Q: what if anything changes for ultra-relativistic fermions?