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February 22, 2019

Announcements:

• Preflight 3 due today

kudos on really great answers to the alternative U question!

• Problem Set 3 out, due next Friday

Last time: particle physics take I

Q: why is the proton stable? the electron? ν?

began cosmic statistical mechanics

for ultra-relativistic bosons b (not conserved, i.e., µb/T ≪ 1)

Q: number density nb(T)? energy density εb(T)? pressure Pb(T)?

Q: familiar example?
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Ultra-Relativistic Thermal Bosons: Exact Results

for boson species with g internal states (helicity etc)

nrel,b =
g

2π2 h̄3c3

∫ ∞

0
dE

E2

eE/kT − 1

= g
ζ(3)

π2

(

kT

h̄c

)3

∝ T3 (1)

ρrel,bc2 =
g

2π2 h̄3c3

∫ ∞

0
dE

E3

eE/kT − 1

= g
π2

30

(kT)4

(h̄c)3
∝ T4 (2)

where the number density includes a factor of

ζ(3) =
∞
∑

n=1

1

n3
= 1 +

1

23
+

1

33
+ · · · = 1.20206 . . . (3)2



Relativistic Bosons: Generalized Blackbody Radiation

Our results generalize the blackbody radiation results:

Planck function for photon number density distribution

dn

dE
=

g

2π2 h̄3c2
E2 f(E) =

g

2π2 h̄3c2
E2

eE/kT − 1
(4)

occupation number f(E) = 1/(eE/kT − 1) quanta with E

and energy density distribution

dε

dE
= E

dn

dE
=

g

2π2 h̄3c2
E3

eE/kT − 1
(5)

where total number and energy densities

n =
∫ ∞

0

dn

dE
dE ε =

∫ ∞

0

dε

dE
dE (6)

photons: g = 2 polarizations

gives blackbody radiation results

Q: what if anything changes for ultra-relativistic fermions?
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Ultra-Relativistic Thermal Fermions

still ultra-relativistic, so mf ≪ T and dimensional analysis same

but for fermions, occupation number limited by Pauli principle

boson expression fb = 1/(eE/kT − 1) replaced by

fermionic ff = 1/(eE/kT + 1)

nrel,f =
g

2π2 h̄3c3

∫

dE
E2

eE/kT+1
(7)

=
3

4
nrel,b (8)

ρrel,f =
7

8
ρrel,b (9)

so n ∝ T3 and ρ ∝ T4 for both

e.g., CMB today: nγ,0 = 411 cm−3

also nrel,f < nrel,b and ρrel,f < ρrel,b (Pauli)
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For all ultra-relativistic particles (with µ ≪ T):

Prel =
1

3
ρrelc

2 (10)

⋆ holds for both fermions and bosons!

e.g., Prel,f = ρrel,f/3 < Prel,b

⋆ shows that relativistic particles have wrel = +1/3

⋆ P ∝ T4

now imagine a relativistic species with distinct antiparticles

so particle X and antiparticle X̄ are different Q: examples?

Q: nX̄(T)? εX̄(T)? pressure PX̄(T)?
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What About Antiparticles?

particle x and antiparticle x̄: both have same mass m

and same internal degrees of freedom g

thus: for the case we have considered

all thermal properties should be the same!

nX̄ = nX (11)

εX̄ = εX (12)

PX̄ = PX (13)

• thermal bath creates XX̄ pairs

• not maximally general: really, we assumed no net X excess

if there is, chemical potential µX 6= 0 leads to nX 6= nX̄

now consider the early Universe

Q: what determines the total radiation density ρrad?
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Cosmic Radiation Evolution

for any relativistic species, the absolute density

is set entirely by temperature: ρ ∝ T4!

i.e., particles not conserved, thermal bath adjusts to this

Total cosmic radiation density sums over all relativistic species:

• both particles and antiparticles

• possibly species have different temperatures Tb and Tf

ρrel =
∑

i

ρrel,i (14)

=
π2

30
T4





∑

bosons

gb

(

Tb

T

)4

+
∑

fermions

7

8
gf

(

Tf

T

)4


 (15)
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Relativistic Degrees of Freedom

ρrel =
∑

i

ρrel,i (16)

=
π2

30
T4





∑

bosons

gb

(

Tb

T

)4

+
∑

fermions

7

8
gf

(

Tf

T

)4


 (17)

= g∗(T)
π2

30
T4 (18)

• T is for some reference species, usually photons

• g∗ counts “relativistic degrees of freedom”

e.g., photons contribute g∗,γ = 2

left-handed νν̄ contributes g∗,ν = 2 · 7/8 = 7/48



Particle Census and the Radiation Era

In radiation-dominated early universe:

(

ȧ

a

)2

≈ 8πGρrel/3 ∝ g∗(T) T4 (19)

⋆ early expansion history depends on

number, types of relativistic particles

⋆ microphysics (particle content) of the Universe

controls macroscopic cosmic dynamics

⋆ ...so any measure of early expansion rate

is a probe of particle physics!

... as we will soon see
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Non-Relativistic Statistical Mechanics

Now consider non-relativistic species of mass m at T

full results in Director’s Cut Extras

order of magnitude:

for non-conserved ultra-relativistic species, we found nrel ∼ λdeB(T)−3

Q: what is thermal de Broglie wavelength here? estimate of n?

Q: what is strange about this result?

Hint: what sets n(T)? apply to objects in this room?

1
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naive estimate of non-relativistic number density:

kinetic energy ∼ kT gives momentum p ∼
√

mkT

and thermal de Broglie wavelength λdeB(T) ∼ h̄/p ∼ h/
√

mkT ,

and so expect

nnaive(T) ∼ λdeB(T)−3 ∼
(

mkT

h̄2

)3/2

(20)

but for a given species m, absolute number density n(T)

entirely and universally determined by temperature

but that can’t be right!

density of water in you, a beverage, and the air

are all different!

also: for T = 300 K this gives

nnaive,water ∼ 1027 cm−3, and ρnaive,water ∼ 3×104 g/cm3. Yikes!

Q: where did we go wrong?
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Non-Relativistic Species: Full Expression

full result includes additional physics we have ignored

derivation appears in Director’s Cut Extras

In the non-relativistic limit E(p) ≃ mc2 + p2/2m, T ≪ m

number density is

n = g

(

mkT

2πh̄2

)3/2

e−(mc2−µ)/kT = g nQ e−(mc2−µ)/kT (21)

• where we identify the quantum concentration

nQ = (mkT/2πh̄2)3/2 ∼ λdeB(T)−3/2

• and where µ is the chemical potential or Fermi energy

consider the µ = 0 case

Q: n(T) behavior as T lowered in fixed volume?

Q: particle vs antiparticle number density?

Q: so what is the effect of µ 6= 0?
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The Chemical Potential

n = g

(

mkT

2πh̄2

)3/2

e−(mc2−µ)/kT = gnQe−(mc2−µ)/kT (22)

with µ = 0:

• n ∼ e−mc2/kT → 0 exponentially at low T !

• particle and antiparticle densities are same since mass is same

→ thermal bath makes pairs, but T ≪ m makes creation rare

• particle number not conserved!

when µ 6= 0:

number density can be anything!

chemical potential enforces particle number conservation!
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Meaning and Use of the Chemical Potential

in Director’s Cut Extras:

µ is free energy cost of adding a particle to the system

if particles are conserved: µ(T) 6= 0

→ this sets number density implicitly

i.e., n(T, µ) = ncons sets values of µ(T, ncons)

µ = mc2 − kT ln

(

g nQ

nnon−rel,cons

)

(23)

free energy cost µ has rest mass term, plus environment term

in cosmo setting: nnon−rel,cons ∝ a−3, ρnon−rel,cons ≃ mn ∝ a−3

given number density n: Q: mass density?

recall ideal gas: Q: kinetic energy density? pressure?
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Non-Relativistic Mass Density and Pressure

mass-energy density

ρc2 = mc2 n +
3

2
kT n ≃ εrestmass = mc2 n (24)

pressure

P =
2

3
εkinetic = nkT ≪ ρc2 (25)

Note:

• recover ideal gas law!

• P ≪ ρc2, and so equation of state parameter is

wnon−rel =
P

ρc2
≈ kT

mc2
≈ 0

1
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BBN: Baryons vs Photons

BBN key controlling parameter:

baryon-to-photon ratio by number

define nB/nγ ≡ η

Q: why should photons affect abundances?

Q: individually, do nB and nγ depend on T? How?

Q: so how does η change over time?

1
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The Baryon-to-Photon Ratio

photons are important for BBN in several ways

• macroscopically: photons critical to cosmic dynamics

photons contribute to radiation density ρrel

that dominates expansion rate H2 ∼ Gρrad

• microscopically: energetic photons can unbind nuclei

e.g., γd → np

competes with nuke reactions, impedes element formation!

photons: nγ ∝ T3 (relativistic thermal distribution)

baryons: nB ∝ a−3 ∝ T3 (baryon # conservation)

⇒ baryon-to-photon ratio η = nB/nγ ∼ (aT)−3 ∼ const

η same today as at end of BBN!1
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Baryon-to-Photon Ratio: Spoiler Alert

Predicted primordial abundances depend on η

→ can use observations to measure baryon/photon ratio

i.e., can us BBN to find η as output

but preview: will find

η ∼ 10−9

so nγ > 109nB thermal (CMB) photons per cosmic baryon!

this imbalance has huge implications!
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BBN: Pioneering Days

Gamow group: (Gamow, Alpher, Herman; 1940’s)

Initial conditions:

early U → high density → all neutrons

(like neutron star)

www: αβγ paper

Hayashi (1950):

weak interactions non-negligible

weak equilibrium determines n/p ratio

Alpher, Follin, & Herman (1953):

first “modern” calculation of n/p ratio

Burbidge, Burbidge, Fowler & Hoyle (≡ B2FH, 1957):

heavy elements made in stars (not BB)

outlined nuclear processes light elements: unknown “X-process”

1
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Director’s Cut Extras

2
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Cosmic Archaelogy: The Early Universe

When are high-energy processes/particles abundant?

• Universe has temperature now: CMB T0 = 2.725 K

⇒ cosmic matter was once in thermal equilibrium

• in thermal bath, typical particle energy is E ∼ kT

• cosmic temperature T ∝ 1/a = 1 + z

Therefore:

• when primordial soup at high-E → high T → early times

⋆ the early universe is the realm of particle physics

⋆ cosmic particle history ⇔ cosmic thermal history
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Cosmic Statistical Mechanics

Consider a “gas” of quantum particles (massive or massless)

states “smeared out” around classical ~x and ~p values

define occupation number or distribution function f(~x, ~p):

number of particles in each phase space “cell”:

dN = gf(~x, ~p)
d3~x d3~p

(2πh̄)3
= gf(~x, ~p)

dVspace dVmomentum

(2πh̄)3
(26)

where g counts internal (spin/helicity) degrees of freedom

and dx dp/2πh̄ counts # of quantum states per cell

particle phase space occupation f determines bulk properties

Q: how? Hint–what’s # particles per unit spatial volume?
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for a given spatial volume element dVspace = d3~x = dx dy dz

number per unit (spatial) volume–i.e., number density–is

dn =
dN

d3~x
= gf(~x, ~p)

d3~p

(2πh̄)3
(27)

→ f gives distribution of momenta at each spatial point

Q: what’s f for gas of (classical) particles all at rest?

Q: f for a (classical) particle beam–directed, monoenergetic?

Q: what’s f for (classical) harmonic oscillator?

Q: given f , how to formally compute

bulk properties n, ε, P?
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Number density

n(~x) =
d3N

d3x
=

g

(2πh̄)3

∫

d3~p f(~p, ~x) (28)

Mass-energy density

ε(~x) = ρ(~x)c2 = 〈E〉 n =
g

(2πh̄)3

∫

d3~p E(p) f(~p, ~x) (29)

Pressure

P(~x) = 〈pivi〉directioni n =
〈pv〉
3

n =
g

(2πh̄)3

∫

d3~p
p v(p)

3
f(~p, ~x)

(30)

Q: these expressions are general–simplifications due to cosmo

principle?
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FRLW universe:

• homogeneous → no ~x dep

• isotropic → only ~p magnitude important → f(~p) = f(p)

in thermal equilibrium:

⊲ Boson occupation number is Bose-Einstein dist’n

fb(p) =
1

e(E−µ)/kT − 1
(31)

⊲ Fermion occupation number is Fermi-Dirac dist’n

ff(p) =
1

e(E−µ)/kT + 1
(32)

Note: µ is “chemical potential” or “Fermi energy”

µ = µ(T) but is independent of E

If E = Etot, µ ≫ T : both → f = e−(E−µ)/kT ≪ 1

→ Boltzmann distribution
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Chemical Potential & Number Conservation

For a particle species in thermal equilibrium

f(p;T, µ) =
1

e(E−µ)/kT ± 1
(33)

What is µ, and what does it mean physically?

First, what if µ = 0

then f, n, P depend only on T

→ everything at same T has same ρ, P !

sometimes true! Q: examples? but not always!

but n often conserved

→ fixed by initial conditions, not T

→ if particle number conserved, µ determined

by solving ncons = n(µ, T) → µ(ncons, T)

so: µ 6= 0 ⇔ particle number conservation
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if “chemical” equilibrium:

• reactions change particle numbers among species

• equilibrium: forward rate = reverse rate

a + b + · · · ↔ A + B + · · ·
then

∑

initial particlesi

νi µi =
∑

final particlesf

νi µf (34)

where νi is number of particles of type i in the reaction

i.e., the Stoichiometric coefficient for particle i

so in chemical equilibrium:

sum of chemical potentials “conserved”

2
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Equilibrium Thermodynamics

Gas of particles: mass m, temperature T :

n, ρ, and P in general complicated

because of relativistic expression E(p) =
√

p2 + m2

but simplify in ultra-rel and non-rel limits

→ controlled by m vs T comparison

Non-Relativistic Species

E(p) ≃ mc2 + p2/2m, non-rel: T ≪ m

for µ ≪ T : Maxwell-Boltzmann, same for Boson, Fermions

for non-relativistic particles = matter

energy density, number density vs T?
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Non-Relativistic Species: Cosmic Matter

In the limit E(p) ≃ mc2 + p2/2m, T ≪ m

n = g

(

mkT

2πh̄2

)3/2

e−(mc2−µ)/kT (35)

ρc2 = mc2 n +
3

2
kT n ≃ εrestmass = mc2 n (36)

P =
2

3
εkinetic = nkT ≪ ρc2 (37)

Note:

• recover ideal gas law!

• P ≪ ρc2→ wnon−rel ≪ 1 ≈ 0

• if particles not conserved: µ = 0

Q: behavior of n(T)? why isn’t this crazy?

• if particles are conserved: µ(T) 6= 0

→ this sets number density implicitly

i.e., n(T, µ) = ncons sets values of µ

in cosmo setting: nnon−rel,cons ∝ a−3, ρnon−rel,cons ≃ mn ∝ a−3
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Ultra-Relativistic Species: Cosmic Radiation

take limit E(p) ≃ cp ≫ mc2 (i.e., kT ≫ mc2)

Also take µ = 0 (µ ≪ kT)

note: now contributions from states with E, µ ≪ T

expect bosons, fermions → different n, ρ, P for same T

Q: why? Hint–think about form of fb and ff
Q: which particle type should have larger n, ρ, P at fixed T?

energy density, number density?

Q: you know this already for bosons!
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for relativistic bosons

nrel,b = g
ζ(3)

π2

(

kT

h̄c

)3

∝ T3

ρrel,bc2 = g
π2

30

(kT)4

(h̄c)3
∝ T4

where

ζ(3) =
∞
∑

n=1

1

n3
= 1 +

1

23
+

1

33
+ · · · = 1.20206 . . . (38)

relativistic fermions:

nrel,f =
3

4
nrel,b (39)

ρrel,f =
7

8
ρrel,b (40)

so n ∝ T3 and ρ ∝ T4 for both

e.g., CMB today: nγ,0 = 411 cm−3

also nrel,f < nrel,b and ρrel,f < ρrel,b (Pauli)
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Chemical Potential: Thermodynamic Definition

consider a system where we can adjust the volume V

and with internal energy E, but fixed particle number N

then entropy S chages as

T dS = dE + p dV fixed N (41)

now allow N to change – this also changes entropy

T dS = dE + p dV − µ dN (42)

we see that the chemical potential is

µ(S, V ) =

(

∂E

∂N

)

S,V
(43)

measures change in interal energy due to adding a particle

adiabatically and at constant volume

3
2



define Helmholtz free energy F = E − TS, then

dF = −p dV − S dT + µ dN (44)

then can also define chemical potential as

µ(T, V ) =

(

∂F

∂N

)

T,V
(45)

free energy cost of adding one particle at constant T and V

for non-relativistic gas with conserved density ncons we found

µ = mc2 − kT ln

(

g nQ

ncons

)

(46)

free energy particle cost dominated by rest mass mc2

but is reduced slightly by “environmental” term kT ln(gnQ/n)

Note: if µ = 0 then no free energy cost to adding particles

→ particle number can change freely → no particle conservation
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