Astro 596/496 NPA Lecture 17 February 25, 2019

Announcements:

1

Problem Set 3 out, due next Friday
 Office Hours Wed 2-3pm or by appointment
 if questions arise will post Discussion on Compass

Last time: began thermal history of the Universe early U expansion radiation dominated: $H^2 \approx 8\pi G \rho_{rad}/3$ Q: at any T, what determines ρ_{rad} ? Q: when/why does g_* change? how should $g_*(T)$ evolve with T? thermal radiation (energy) density:

for boson (fermion) species each with its $T_{\rm b}~(T_f)$

$$\rho_{\rm rel} = \sum_{i} \rho_{{\rm rel},i} = g_*(T) \ \frac{\pi^2 k^4 T^4}{30 \pi^3 c^3}$$

where $T = T_{\gamma}$ is photon temperature, and where g_* counts "effective relativistic degrees of freedom"

$$g_*(T) = \sum_{\text{bosons}} g_{b} \left(\frac{T_{b}}{T}\right)^4 + \sum_{\text{fermions}} \frac{7}{8} g_{f} \left(\frac{T_{f}}{T}\right)^4$$

 g_{\ast} changes when species become non-relativistic, i.e., $T < m_i$ thus decreases with time

consider epochs when $g_* \approx const$

 $\sim Q: \rho_{\mathsf{rad}}(a)? a(t)? H(t)? T(t)? t(T)? effect of g_*?$

Radiation Domination: Time and Temperature Evolution

when $g_* \approx const$: relativistic species $T_i \propto a^{-1}$:

$$\left(\frac{\dot{a}}{a}\right)^2 \sim \rho_{\rm rad} \sim g_* T^4 \sim \frac{g_*}{a^4}$$
 (1)

$$a \ da \ \sim \ g_*^{1/2} \ dt$$
 (2)

and integration gives

$$a \sim g_*^{1/4} t^{1/2}$$
 (3)

$$H = \frac{a}{a} = \frac{1}{2t} \tag{4}$$

$$T \sim \frac{1}{a} \sim \frac{1}{g_*^{1/4} t^{1/2}}$$
 (5)

$$t \sim \frac{1}{g_*^{1/2} T^2}$$
 (6)

ω

*higher g** means *faster expansion* Q: g_* at BBN onset $T \gtrsim few$ MeV?

BBN Initial Conditions: Radiation Domination

total relativistic energy density at BBN onset:

$$\rho_{\rm rel} = \rho_{\gamma} + \rho_{e^{\pm}} + N_{\nu} \rho_{1\nu\bar{\nu}} \equiv g_* \frac{\pi^2}{30} T^4 \tag{7}$$

$$g_* = g_*(\gamma) + g_*(e^{\pm}) + \sum_{\text{neutrinos},i} g(\nu_i \overline{\nu}_i)$$
(8)

pairs: at $T \gtrsim 1$ MeV, e^{\pm} are relativisitc for each, s = 1/2, so g = 2 spin degrees of freedom

$$g_*(e^{\pm}) = g_*(e^{-}) + g_*(e^{+}) = \frac{7}{8} \cdot 2 \cdot 2 = \frac{7}{2}$$
 (9)

neutrinos: for sure $m_{\nu} \lesssim 1 \text{eV} \ll T$

4

also assume $\mu_{\nu} \ll T \rightarrow \text{absolute } n_{\nu}, \rho_{\nu}, P_{\nu} \text{ set by } T_{\nu}$; equivalent to $n_L \sim n_B$ each species $\nu_i \in (\nu_e, \nu_{\mu}, \nu_{\tau})$ has $g(\nu_i) = 1$ helicity neutrinos are born left handed only! "maximally parity violating"

$$g_*(\nu_i \bar{\nu}) = g_*(\nu_i) + g_*(\bar{\nu}_i) = \frac{7}{8} \cdot 2 = \frac{7}{4}$$
(10)

BBN Initial Conditions: Expansion History and Rate

relativistic degrees of freedom at BBN start:

$$g_* = g_*(\gamma) + g_*(e^{\pm}) + \sum_{\text{neutrinos},i} g(\nu_i \bar{\nu}_i) = \frac{22 + 7N_{\nu}}{4} = \frac{43}{4}$$

Friedmann gives:

$$\frac{t}{1 \text{ sec}} \approx \left(\frac{1 \text{ MeV}}{T}\right)^2 \tag{11}$$

expansion rate

$$H = \frac{1}{2t} \approx 1 \, \sec^{-1} \, \left(\frac{T}{1 \, \text{MeV}}\right)^2 \tag{12}$$

 $^{\circ}$ now focus on baryons *Q*: what sets n_B ? n/p?

BBN Initial Conditions: The Baryons

Cosmic baryon density n_B , and thus $\eta = n_B/n_\gamma$ not changed by reactions with $T \lesssim E_{\text{Fermilab}} \sim 1 \text{ TeV} = 10^6 \text{ MeV}$ i.e., baryon non-conservation not observed to date $\triangleright n_B$ set somehow in early universe ("cosmic baryogenesis") \triangleright don't *a priori* know n_B , treat as free parameter (η)

neutron-to-proton ratio n/p can and does change at ~ 1 MeV Q: what kind of interaction needed to change $n \leftrightarrow p$? Q: what happens to n, p if such reactions are "fast"? for $n \leftrightarrow p$ interchange nucleon (quark) type must change \Rightarrow only happens in weak interactions

neutrino and electron interactions allow nucleon interconversion

$$n + \nu_e \leftrightarrow p + e^-$$
(13)
$$p + \bar{\nu}_e \leftrightarrow n + e^+$$
(14)

when rates "fast":

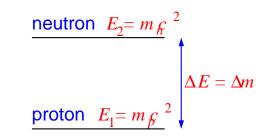
- n, p system driven to ("chemical") equilibrium zero net reaction rate per volume: $r(n \rightarrow p) = r(p \rightarrow n)$
- $(n/p) \rightarrow (n/p)_{\text{eq}}$

Note: since weak interactions fast, EM rxns also fast: \Rightarrow all particles thermal, w/ same T

while weak interaction is fast, i.e., in equilibrium n/p ratio is "thermal"

think of as 2-state system: the "nucleon,"

- nucleon "ground state" is the proton
- nucleon "excited state" is the *neutron*



when in equilibrium Boltzmann gives state ratio:

$$\left(\frac{n}{p}\right)_{\text{equilib}} = \frac{g_n}{g_p} e^{-(E_2 - E_1)/T} = e^{-(m_n - m_n)/T}$$
(15)

Q: behavior at low T? high T? what sets these regimes?

Neutron-to-Proton Evolution: Equilibrium

equilibrium neutron-to-proton ratio

$$\left(\frac{n}{p}\right)_{\text{equilib}} = \frac{g_n}{g_p} e^{-(E_2 - E_1)/T} = e^{-(m_n - m_n)/T}$$
(16)

scale set by nucleon mass difference

$$\Delta m = m_n - m_p = 1.293318 \pm 0.000009 \text{ MeV}$$
(17)

at $T\gg \Delta m$: $n/p\simeq 1$

at $T \ll \Delta m$: $n/p \simeq 0$

Equilibrium is Not Forever

when in equilibrium, U completely described by

- temperature T and
- conserved quantum numbers (via chem potentials μ) Universe would be boring if always in equilibrium!

Happily, fell out of eq. now and then: "freeze-out" *freezeouts are most interesting times in cosmology*BBN, CMB, dark matter, baryon excess all stem from freezeouts

$n \leftrightarrow p$ equilibrium only holds

while weak reactions can maintain it

5 Q: What would cause equilibrium to fail? Q: How would you quantify when eq fails?

Cosmic Freezeouts

useful rule: a reaction is

(1) in equilibrium when conversion rate per nucleon $\Gamma \gg H$ Hubble rate i.e., mean lifetime \ll expansion time or, mean free path \ll horizon size $\sim ct \sim cH^{-1}$

(2) "frozen out" when $\Gamma \ll H$

Suggests "freezeout" criterion

$$\Gamma \stackrel{\rm freeze}{=} H$$

```
\stackrel{!}{\vdash} so T_{f} set by: H(T_{f}) = \Gamma(T_{f})
```

Weak $n \leftrightarrow p$ Rates

example: want rate $\Gamma_{\text{pern}} n$ of $\nu + n \rightarrow e^- + p$ as function of T

Generally,

$$\Gamma_{\text{per }n} = n_{\nu} \langle \sigma v \rangle \sim T^3 \langle \sigma \rangle \tag{18}$$

since $v_{\nu} \simeq c$

can show: cross section $\sigma \sim \sigma_0 (E_{\nu}/m_e)^2 \sim E_{\nu}^2$ where $\sigma_0 \sim 10^{-44} \text{ cm}^2 \sim 10^{-19} \sigma_{\text{nuclear}}$ very small! so *thermal average:* $\langle \sigma \rangle \sim \sigma_0 (T/m_e)^2$

for experts:
$$\sigma \sim G_F^2 T^2 \sim \alpha_{\rm weak} T^2/M_W^4$$

so $\Gamma_{\rm weak} \sim \alpha_{\rm weak} T^5/M_W^4$

Weak Freezeout Temperature

Weak interactions freeze when $H = \Gamma_{\text{weak}}$, i.e.,

$$\sqrt{G_{\text{grav}}T^2} \sim \sigma_0 m_e^{-2} T^5$$
(19)

$$\Rightarrow T_{\text{weak freeze}} \sim \frac{(G_{\text{grav}})^{1/6}}{(\sigma_0/m_e^2)^{1/3}} \sim 1 \text{ MeV}$$
(20)

gravity & weak interactions conspire to give $T_{f} \sim m_{e} \sim B_{nuke}!$

for experts: note that $G_{\text{grav}} = 1/M_{\text{Planck}}^2$, so

$$\frac{T^2}{M_{\text{Pl}}} \sim \alpha_{\text{weak}} \frac{T^5}{M_W^2}$$
(21)
$$\Rightarrow T_{\text{freeze}} \sim \left(\frac{M_W}{M_{\text{Pl}}}\right)^{1/3} M_W \sim 1 \text{ MeV}$$
(22)

freeze at nuclear scale, but by accident!

μ

Q: what happens to n, p then? what else is going on?

Interlude: Pair Annihilation

right after weak freezeout, T_{γ} drops below $m_e = 0.511$ MeV pairs become nonrelativistic, annihilate: $e^+e^- \rightarrow \gamma\gamma$

- \bullet mass energy \rightarrow back to radiation
- \bullet small leftover amount of e^-
- ★ a sort of "heating" but really just restores relativistic energy T_{γ} never rises, but cooling is briefly slowed
- ★ since ν s decoupled, don't receive pair energy cooler than photons thereafter can show: $T_{\nu} = (4/11)^{1/3}T_{\gamma} = 0.714T_{\gamma}$ today, the (relativistic) cosmic neutrino backgrounds have $T_{\nu,0} = 0.714T_{\gamma,0} = 1.95$ K
- [↓] if you can think of how to detect this *cosmic* ν *background* let me know and we'll publish—you can even be second author!

The Short but Interesting Life of a Neutron

(1) at
$$T > T_f$$
, $t \sim 1$ s
 $n \leftrightarrow p$ rapid
maintain $n/p = e^{-\Delta m/T}$

(2) at
$$T = T_f$$
,
fix $n/p = e^{-\Delta m/T_f} \simeq 1/6$
so *n* "mass fraction" is
 $X_n = \frac{\rho_n}{\rho_B} = \frac{m_n n}{m_n n + m_p p} \approx \frac{n}{n+p} \approx 1/7$ (23)

(3) until nuclei form, free *n* decay: $\dot{n} = -n/\tau_n$, with $\tau_n = 885.7 \pm 0.8$ s then mass fraction drops as

$$X_n = X_{n,i} e^{-\Delta t/\tau} \tag{24}$$

Q: why take this simple from?

Deuterium Bottleneck

Build complex nuclei from n, pfirst step: deuterium production $n + p \rightarrow d + \gamma$ www: BBN reaction network energy release $Q = B(d) = E_{\gamma} = 2.22$ MeV: exothermic

reverse "photodissociation" $d + \gamma \rightarrow n + p$ allowed but *endo*thermic

Naïvely: at $T < T_f < Q$, too cold to photo-dis But: $n_{\gamma}/n_B = 1/\eta \sim 10^9 \gg 1$ \Rightarrow many photons per baryon $\Rightarrow \langle E_{\gamma} \rangle < Q$, but many photons have $E_{\gamma} > Q$ D can't survive until $T \ll Q!$ c.f. delay in recombination—same idea

Q: How low to go?

Nuclear Statistical Equilibrium

For a non-relativistic species (Maxwell-Boltzmann):

$$n = \left(\frac{mkT}{2\pi\hbar^2}\right)^{3/2} e^{-(m-\mu)/T}$$
(25)

For $n(p,\gamma)d$ in *chemical equilibrium*: $\mu_n + \mu_p = \mu_d + \mu_\gamma = \mu_d$, (since $\mu_\gamma = 0$), so

$$\frac{n_n n_p}{n_d} = \left(\frac{(m_n m_p / m_d) kT}{2\pi \hbar^2}\right)^{3/2} e^{-(m_n + m_p - m_d)/T} \\
= \left(\frac{m_u kT/2}{2\pi \hbar^2}\right)^{3/2} e^{-B_D/T}$$
(26)

example of "nuclear statistical equilibrium" this example: Saha equation

write baryon fraction $Y_i = n_i/n_B$ and $n_B = \eta n_\gamma$

$$Y_d \sim Y_n Y_p \eta (T/m_u)^{3/2} e^{B_D/T}$$
(27)

Q: what is low-T behavior?

When $Y_d \rightarrow 1$: Nuke buildup starts

$$\ln Y_d \simeq B_D / T + \ln \eta + 3/2 \ln T / m_u \sim 0$$
 (28)

SO

$$T_D \simeq \frac{B_D}{\ln \eta^{-1}} \sim 0.07 \text{ MeV}$$
(29)

i.e., nuke rxns begin at $T \simeq 10^9$ K Note: $T_D \ll B_2$ since $\eta \ll 1$

time $t_d \sim 200 \text{ s} \rightarrow$ "the first 3 min"

between freezeout and T_D : free *n* decay: mass fraction $X_n = X_{n,i}e^{-\Delta t/\tau} \simeq 0.12$

 $\mathbf{H}_{\mathbf{M}}$ www: nuke network Q: where is flow direction? why?