Astro 596/496 NPA Lecture 18 February 27, 2019

Announcements:

Problem Set 3 out, due next Friday
 Office Hours Wed 2-3pm or by appointment
 if questions arise will post Discussion on Compass

Last time: neutrons and protons in the early Universe *Q: when in equilibrium, what is n/p ratio? Q: what reactions maintain this equilibrium? Q: why does this equilibrium end? when?*

Problem Set 3: Hints and Errata

- for numerical answers, $\eta = 6 imes 10^{-10}$ but you can use $\eta \sim 10^{-9}$ without penalty
- Question 2(b): can skip last part involving $\Omega_B h^2$
- Cosmic Entropy

note that energy density is $\varepsilon = \varepsilon(T) = (\partial E / \partial_V)_T$ so that in 2nd law of thermo, $E = E(T, V) = \varepsilon(T) V$ similarly S = s(T) V, N = n(T) V

in notes, factor of 2 typo fixed:

Planck function for photon number density distribution

$$\frac{dn}{dE} = \frac{g}{2\pi^2 \hbar^3 c^2} E^2 f(E) = \frac{g}{2\pi^2 \hbar^3 c^2} \frac{E^2}{e^{E/kT} - 1}$$
(1)

Ν

in early universe: $T \gg 1$ MeV:

ω

neutrino and electron interactions allow nucleon interconversion

$$n + \nu_e \leftrightarrow p + e^-$$
 (2)

$$p + \bar{\nu}_e \leftrightarrow n + e^+$$
 (3)

finds equilibrium: equal forward and reverse rates per volume when in equilibrium Boltzmann gives: $\frac{\text{neutron } E_2 = m_{\vec{k}}^2}{2}$

$$\left(\frac{n}{p}\right)_{\text{equilib}} = \frac{g_n}{g_p} e^{-(E_2 - E_1)/T} = e^{-(m_n - m_n)/T} \left[\Delta E = \Delta m\right]$$

equilibrium requires *rate per nucleon* $\Gamma \gg H$ *Hubble rate* lost at **freezeout**:

$$\Gamma \stackrel{\rm freeze}{=} H$$

 $n \leftrightarrow p$ freezeout: $T_{\text{freeze}} \approx 1 \, \text{MeV}$, $t_{\text{freeze}} \approx 1$ sec

Interlude: Pair Annihilation

right after weak freezeout, T_{γ} drops below $m_e = 0.511$ MeV pairs become nonrelativistic, annihilate: $e^+e^- \rightarrow \gamma\gamma$

- mass energy \rightarrow back to radiation
- \bullet small leftover amount of e^- to balance p charge
- ★ a sort of "heating" but really just restores relativistic energy T_{γ} never rises, but cooling is briefly slowed
- ★ since ν s decoupled, don't receive pair energy cooler than photons thereafter can show (**PS3**): $T_{\nu} = (4/11)^{1/3}T_{\gamma} = 0.714T_{\gamma}$ today, the (relativistic) cosmic neutrino backgrounds have $T_{\nu,0} = 0.714T_{\gamma,0} = 1.95$ K

[▶] ★ if you can think of how to detect this *cosmic* ν *background* let me know and we'll publish—you can even be second author!

The Short but Interesting Life of a Neutron

(1) at
$$T>T_f$$
, $t\sim 1$ s
 $n\leftrightarrow p$ rapid
maintain $n/p=(n/p)_{ ext{eq}}=e^{-\Delta m/T}$

(2) at $T = T_f$, freezeout fixes $(n/p)_f = e^{-\Delta m/T_f} \simeq 1/6$ so *n* "mass fraction" is $X_n = \frac{\rho_n}{\rho_B} = \frac{m_n n}{m_n n + m_p p} \approx \frac{n}{n+p} \approx 1/7$ (4)

(3) until nuclei form, free *n* decay: $\dot{n} = -n/\tau_n$, with $\tau_n = 885.7 \pm 0.8$ s then mass fraction drops as

С

$$X_n = X_{n,i} e^{-\Delta t/\tau} \tag{5}$$

Q: why take this simple from?

Deuterium Bottleneck

Build complex nuclei from n, pfirst step: deuterium production $n + p \rightarrow d + \gamma$ www: BBN reaction network energy release $Q = B(d) = E_{\gamma} = 2.22$ MeV: exothermic

reverse "photodissociation" $d + \gamma \rightarrow n + p$ allowed but *endo*thermic

Naïvely: at $T < T_f < Q$, too cold to photo-dissociate But: $n_{\gamma}/n_{\rm B} = 1/\eta \sim 10^9 \gg 1$ \Rightarrow many photons per baryon $\Rightarrow \langle E_{\gamma} \rangle < Q$, but many photons have $E_{\gamma} > Q$ D can't survive until $T \ll Q!$

PS3: find when $n_{\gamma}(>Q) \sim n_{\mathsf{B}}$

Q: How low to go?

σ

Nuclear Statistical Equilibrium

For a non-relativistic species (Maxwell-Boltzmann):

$$n = \left(\frac{mkT}{2\pi\hbar^2}\right)^{3/2} e^{-(m-\mu)/T} \tag{6}$$

For $n(p,\gamma)d$ in *chemical equilibrium*: $\mu_n + \mu_p = \mu_d + \mu_\gamma = \mu_d$, (since $\mu_\gamma = 0$), so

$$\frac{n_n n_p}{n_d} = \left(\frac{(m_n m_p / m_d) kT}{2\pi \hbar^2}\right)^{3/2} e^{-(m_n + m_p - m_d)/T} \\
= \left(\frac{m_u kT/2}{2\pi \hbar^2}\right)^{3/2} e^{-B_D/T}$$
(7)

example of "nuclear statistical equilibrium" this example: Saha equation

write baryon fraction $Y_i = n_i/n_B$ and $n_B = \eta n_\gamma$

$$Y_d \sim Y_n Y_p \eta (T/m_u)^{3/2} e^{B_D/T}$$
(8)

Q: what is low-T behavior?

1

When $Y_d \rightarrow 1$: Nuke buildup starts

$$\ln Y_d \simeq B_D / T + \ln \eta + 3/2 \ln T / m_u \sim 0$$
 (9)

so (big hint for PS 3!)

$$T_D \simeq \frac{B_D}{\ln \eta^{-1}} \sim 0.07 \text{ MeV}$$
(10)

i.e., nuke rxns begin at $T \simeq 10^9$ K Note: $T_D \ll B_2$ since $\eta \ll 1$

time $t_d \sim 200 \text{ s} \rightarrow$ "the first 3 min"

between freezeout and T_D : free *n* decay: mass fraction $X_n = X_{n,i}e^{-\Delta t/\tau} \simeq 0.12$

 $^{\infty}$ www: nuke network Q: where is flow direction? why?

Nuke reaction flow \rightarrow highest binding energy \rightarrow ⁴He

almost all $n \rightarrow {}^{4}$ He: $n({}^{4}$ He)_{after} = 1/2 $n(n)_{before}$ $Y_p = X({}^{4}$ He) $\simeq 2(X_n)_{before} \simeq 0.24$ $\Rightarrow \sim 1/4$ of baryons into 4 He, $3/4 p \rightarrow$ H result weakly (log) dependent on η

(11)

Robust prediction: large universal ⁴He abundance

But nuke rxns also freeze out $\Rightarrow n \rightarrow {}^{4}$ He conversion incomplete leftover traces of incomplete burning:

• D

Q

- ³He (and ³H \rightarrow ³He)
- ⁷Li (and ⁷Be \rightarrow ⁷Li)

trace abundances \leftrightarrow nuke freeze T

 \Rightarrow strong $n_B \propto \eta$ dependence

BBN theory: main result

- light element abundance predictions
- depend on baryon density $\leftrightarrow \eta \leftrightarrow \Omega_{\text{baryon}}$

"Schramm Plot' '

10

Lite Elt Abundances vs η summarizes BBN theory predictions

www: Schramm plot

Note: no A > 7... Q: why not?

Why don't we go all the way to 56 Fe? after all: most tightly bound \Rightarrow most favored thermodynamically (nuclear statistical equilibrium)

Why no elements A > 7?

1. Coulomb barrier

11

heavier products require heavier reactants which have higher charges

2. nuclear physics: "mass gaps" no stable nuclei have masses A = 5,8 \rightarrow with just $p \& {}^{4}$ He, can't overcome via 2-body rxs need 3-body rxns (e.g., $3\alpha \rightarrow {}^{12}$ C) to jump gaps but ρ , T too low

Stars *do* jump this gap, but only because have higher density a long time compared to BBN