Astro 596/496 NPA Lecture 21 March 8, 2019

Announcements:

- Preflight 4 due today
- a bit of rest for the weary-*nothing due next Friday!*

Last time: BBN concordance and implications

- big bang cosmology working back to $t\sim 1$ sec, $z\sim 10^{10}$...if we don't worry to much about lithium
- BBN measures Ω_B

Q: what's that? Q: is it big or small-and compared to what?

Н

Subcritical Baryons and Two Kinds of Dark Matter $0.039 \le \Omega_B \le 0.045$

 $\Omega_{\rm B} \ll 1$ baryons do not close the universe!

 $\Omega_B \ll \Omega_{Matter} \simeq 0.3$

most of cosmic matter is not made of baryons! **"non-baryonic dark matter"**

huge implications for particle physics-more on this to come

Measure known baryons which are directly observable optically

i.e., in *luminous* form (stars, gas): $\rho_{\text{lum}} = (M/L)_{\star} \mathcal{L}_{\text{vis}}$ $\Omega_{\text{lum}} \simeq 0.0024 h^{-1} \sim 0.004 \ll \Omega_{\text{B}}$

Ν

⇒ most baryons dark! "baryonic dark matter"

Q: Where are they?

Where are the dark baryons?

• compact objects (white dwarfs, neutron stars, black holes) search for *MACHOs*: MAssive COmpact Halo Objects via gravitational microlensing www: lensing diagram, MACHO event see lensing events towards LMC! but are they MACHOs or LMC stars? ...probably the latter

• warm/hot intergalactic medium (WHIM) structure formation \rightarrow infall \rightarrow shock heat to $T \sim 10^5 - 10^7$ K note: in galaxy clusters, most baryons in hot "intracluster" gas, not galaxies! www: X-ray cluster but X-rays from WHIM gas harder to see... recent evidence of diffuse "X-ray forest" www: Chandra spectra

ω

BBN and the CMB: Battle of the Baryons

Until recently:

4

BBN was the premier means for measuring $\eta \propto \Omega_B$

 \rightarrow the best cosmic ''baryometer''

Now: CMB independently measures η

battle of the baryons

compare independent measures of η test of cosmology!

If agreement: big bang working very well! $z \sim 10^{10}$ theory & light elements quantitatively consistent with $z \sim 10^3$ theory & CMB

If disagreement: a pressing problem!

BBN in Light of the CMB

Planck 2018: $\Omega_{\text{baryon,CMB}}h^2 = 0.02242 \pm 0.00014$ $\Rightarrow \eta_{\text{CMB}} = (6.013 \pm 0.038) \times 10^{-10}$

- 1.2% precision!
- independent of BBN!

BBN vs CMB: Testing Cosmology

pillar vs pillar!

www: Schramm plot: η_{BBN} vs η_{CMB}

Concordance!

BBN Theory/Data Confrontation

Procedure:

1. use η_{CMB} as input to (Standard) BBN theory

2. compute light elements including uncertainties from nuke cross sections

3. compare with observations including uncertainties

www: abundance likelihoods (CFO)

- D agreement perfect! ⁴He agreement excellent-including Y_{CMB} !
- ⁷Li tension clearer hot research topic
 lithium problem could point to new physics!

σ

Q: how is lithium measured?

Lithium-7: Observations

best candidates: low-metal stars in our Galaxy "population II" or "halo" or "spheroid" stars

```
old stars \rightarrow low mass (\sim 1 M_{\odot})
low metallicity: [Fe/H] < -1.5 down to -4
```

```
trouble: Li has low binding: "fragile"
burned when T \gtrsim 2.5 \times 10^6 K \ll T_{core,\odot}
\Rightarrow if surface material dragged into interior, can burn Li
```

stellar envelope convection \rightarrow Li depletion but: convection zone depth \downarrow as T_{eff} \uparrow \Rightarrow pick hottest \gtrsim 5800 K (MS, subgiants) no (?) Li depletion

measure Li i via absorption

- www: solar spectrum around 6707Å
- www: halo star spectra

⁷Li **Results**

Spite & Spite (1984): first Li in Pop II

- $(\text{LI/H})_{\text{II}} \sim 10^{-10}$
- Li flat at low [Fe/H]: "Spite plateau"
- **\star** if undepleted \rightarrow primordial!

Plateau data:

00

www: Li vs Fe

$$\left(\frac{\text{Li}}{\text{H}}\right)_p = (1.23 \pm 0.06 \frac{+0.60}{0.40}) \times 10^{-10}$$
(1)

statistical errors: many stars → small
systematics: dominate

- \bullet ± 0.40 due to stellar atmosphere modelling
- +0.30 due to possible Li burning (depletion) constrained by observations of fragile 6 Li

What's up with ⁷Li?

- observational systematics (e.g., stellar parameters)? Possible. (Melendez & Ramirez 2004; FOV05)
- astrophysical systematics (e.g., depletion)?
 but interstellar Li in Small Mag. Cloud agrees with stellar abundance!
 and for much of plateau, Li dispersion small (≲ 0.2 dex)
 but at [Fe/H] ≲ -3] large dispersion: "plateau meltdown"
 → at least some stars eat Li! But why the metal dependence?
- BBN calculation systematics: nuke reaction rates? But wellmeasured, and can use solar neutrinos to test dominant source: ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ (CFO04)
- 9
- new physics? if so, nature kind-didn't notice till now otherwise, would not have believed hot big bang...