Astro 596/496 NPA Lecture 22 March 11, 2019

Announcements:

- Respite: no class meetings this Wed & Fri
- Nothing due this Friday!

Last time: BBN concordance and implications

- CMB + BBN agreement on cosmic baryon content
- ...but lurking lithium problem
- FLRW cosmology working back to $t\sim 1$ sec, $z\sim 10^{10}$
- baryonic dark matter

 \vdash

• non-baryonic dark matter

Particle Dark Matter

BBN and Particle Dark Matter

BBN motivates dark matter theory & searches two ways: Quantitative. $\Omega_B \ll \Omega_m$: must have non-baryonic dark matter ...and lots of it! Qualitative. BBN success at $t \sim 1$ s \rightarrow early U as physics lab

"The universe is the poor man's particle accelerator"

- Ya. Zel'dovich

Big implications for-and motivations from-particle physics

- *Q*: what can we say about DM properties generally?
- *Q:* what can we say if DM is in particle form? lifetime, mass, interactions, quantum #s?
- ∞ Q: what known particles are candidates for non-baryonic DM?
 Q: does particle theory offer dark matter candidates?

Elementary Particle Physics and Dark Matter

Dark matter dark: no/feeble EM, strong interactions matter: behaves as nonrelativistic material $\rightarrow \rho \propto a^{-3}$, $P \ll \rho c^2$

before inventing new particles first see if we have any particles "ready to go"

Fundamental Particles

high-energy experiments reveal: "everyday" stable species but also *a zoo of unstable particles*

Puzzle:

- huge numbers of unstable particles found that interact with nucleons
- *hadrons* = i.e,. feel strong nuclear force
- www: Particle Data Group hadrons

Puzzle:

CЛ

• $e \mod \text{mag moment is } \mu_e \simeq 2e\hbar/m_ec$ $\mu_p = 2.79 \ e\hbar/m_pc,$ $\mu_n = -1.91 \ e\hbar/m_nc$

Q: what could be going on?

key experiment: e - N scattering – show nucleons not pointlike! instead: nucleon made of 3 pointlike particles

Quarks

n and p not fundamental particles, but "composite" bound states of 3 pointlike quarks name due to Gell-Mann: from J. Joyce's Finnegan's Wake)

two types ("flavors") in N: u "up," d "down" p = uud, $n = udd \rightarrow$ quark electric charge $Q_u = +2/3$, $Q_d = -1/3$ \Rightarrow fundamental charge really is e/3spin S(u) = 1/2 = S(d)

 $_{o}$ hadron particle "spectroscopy" understandable with quarks

Hadrons: Systems of Quarks

baryon = bound \overline{qqq} triple proton $p = \underline{uud}$, neutron $n = \underline{udd}$ also numerous unstable baryons, e.g., $\Delta^{++} = \underline{uuu}$, $\Delta^{-} = \underline{ddd}$ www: PDG baryon listings

meson = bound $q\bar{q}$ pair (which decays) e.g., "pion" $\pi^+ = u\bar{d}, \pi^- = \pi^+ = \bar{u}d$ $\pi^0 = 1/\sqrt{2}(u\bar{u} - d\bar{d})$ $m(\pi^{\pm}) = 140$ MeV, $m(\pi^0) = 135$ MeV decay: $\pi^0 \rightarrow \gamma\gamma, \tau(\pi^0) = 8.4 \times 10^{-17}$ s www: PDG meson listings

Particle Families

Group normal matter constituents as "family"

$$\begin{pmatrix} q_{+2/3} \\ q_{-1/3} \\ \ell_{0} \end{pmatrix} = \begin{pmatrix} u \\ d \\ e \\ \nu_{e} \end{pmatrix}$$
(1)

High-Energy expts show: other quarks, leptons exist! e.g., strange quark s: Q(s) = -1/3 \rightarrow strange baryons $\Lambda = uds$, mesons $K^- = s\bar{u}$ e.g., mu-lepton (muon) μ : $m(\mu) = 105.7 \text{ MeV} \simeq 200 m_e$; I. Rabi: "Who ordered that?" www: PDG lepton listings

3 family "generations" known
new particles decay to "first family" particles
e.g.,
$$\Lambda \rightarrow p + \pi^-$$

Periodic Table of Elementary Particles

known fundamental particles: 3 families

$$\begin{pmatrix} u \\ d \\ e \\ \nu_e \end{pmatrix} \begin{pmatrix} c \\ s \\ \mu \\ \nu_\mu \end{pmatrix} \text{ charm quark } \begin{pmatrix} t \\ b \\ \tau \\ \nu_\tau \end{pmatrix} \text{ top quark bottom quark } (2)$$

+antiparticles

all spin-1/2: matter made of fermions!

for quarks and charged leptons, masses increase with each family same for ν s??

ဖ

Generalized Conservation Laws

Conservation laws: as before, but now

baryon number: includes quarks: $B_q = 1/3$

e.g.,
$$B(\Lambda) = 1$$
, $B(q\bar{q}) = 0$

 \rightarrow ''meson number'' not conserved

lepton number:

separately conserved for each family e, μ , and τ lepton number each conserved $e.g., \mu^- \rightarrow e^- + \gamma$: \otimes ! L_{μ}, L_e non-cons instead $\mu^- \rightarrow e^- \nu_{\mu} \overline{\nu}_e$ OK

5 Whenever see a reaction:

first task is to ensure conservation laws obeyed

Fundamental Interactions: Overview

		Mass			Typical
	Field	$m_{boson}c^2$	Range	Relative	Cross section
Interaction	Quantum	(GeV)	(cm)	Strength	at 1 GeV (cm ²)
Strong	Gluon	0	$\sim 10^{-13}$	~ 1	$\sim 10^{-26}$
Weak	W^{\pm}, Z^{0}	82, 91	$\sim 10^{-16}$	$\sim 10^{-5}$	$\sim 10^{-40}$
Electromagnetic	photon	0	∞	$\alpha = 1/137$	$\sim 10^{-29}$
Gravitation	graviton(?)	0	∞	$\sim 10^{-38}$	N/A

Fundamental Interactions and Forces

at quantum level: **matter made of fermions forces between fermions transmitted by boson exchange** e.g., Coulomb scattering: $e\mu \rightarrow e\mu$ exchange photon

boson mass \leftrightarrow force range exchange timescale $\Delta E \Delta t \sim m_{boson}c^2 \Delta t \lesssim \hbar$ \Rightarrow range $r \lesssim c \Delta t \sim \hbar/m_{boson}c$ boson Compton wavelength EM: photon $m_{\gamma} = 0 \rightarrow$ infinite range. $V_{Coul} \sim 1/r$ Gravity: also $V \sim 1/r \rightarrow$ massless graviton(?) Weak: massive bosons $W^{\pm}, Z^{0} \rightarrow$ finite range Strong: gluons massless, but interaction $V_{strong}(r) \sim a/r + kr$ Q: what's weird about this? implications?

Quark Confinement

gluon interactions between quarks (and each other!)

$$V_{\text{strong}}(r) \sim \frac{a}{r} + kr$$
 (3)

linear term: as $r \to \infty$, $V \to \infty$! but once interaction energy $V > m_q c^2$, can make more quarks $q \quad \bar{q} \to q\bar{q} + q\bar{q}$

quark confinement: no free quarks found! always bound into baryons (qqq) mesons $(q\bar{q})$

```
(note: nuclear force \simeq \pi exchange range r_{\rm nuke} \sim \hbar/m_{\pi}c \sim 1 fm)
```

Ц Ш

Particle Interactions: Who feels what?

all particles subject to gravity, and neutrinos "feel" only weak interaction charged leptons feel only weak and EM quarks feel all forces

Note: β decay really quark transformation $n \rightarrow p + e^- + \bar{\nu}_e$ $udd \rightarrow uud + e^- + \bar{\nu}_e$ $\Rightarrow d \rightarrow u + e^- + \bar{\nu}_e$

The Standard Model of Particle Physics: Twitter Version

- 3 matter families of quarks and leptons
- massless neutrinos

- fundamental interactions/forces: exchange of field quanta structure set by internal symmetry
 ▷ strong: quanta are gluons
 ▷ electromagnetic: photon γ
 ▷ weak: W⁺,W⁻,Z⁰
 ▷ and gravity (graviton?)
- Higgs field: scalar field, couples to all particles coupling strength \rightarrow particle mass Higgs field quanta: spin-0 Higgs boson mass $m(H^0) = 125.18 \pm 0.16$ GeV largest known unstable: decays to everything! e.g., $H^0 \rightarrow b\overline{b}$

Non-Baryonic Dark Matter: Standard Model Candidates

Q: what Standard Model particles **could** *be non-baryonic dark matter?*

Q: hint–what Standard particles are stable?

Q: what is needed to tell if Standard Model particles are DM?

Standard Model Non-Baryonic Dark Matter

non-baryonic dark matter:

- not baryons: quarks are out
- *matter:* non-relativistic: photons are out
- stable: Higgs, W^{\pm} , Z^{0} out

Leaves leptons

Charged leptons: e, μ, τ

only e stable, charge neutrality $n_e = n_Z$, $m_e \ll m_{\rm U}$ $\rightarrow \rho_e \ll \rho_B$

neutral leptons: neutrinos! ν_e, ν_μ, ν_τ

- not baryons!
- stable!
- weakly interacting
- families: get "three for price of one!"

index get times for price of one. excellent non-baryonic dark matter candidate! ...and the only Standard Model non-baryonic DM candidate!

Neutrino Dark Matter

neutrinos are a guaranteed component of non-baryonic dark matter!

even better: we know the cosmic neutrino number density! recall: neutrinos freeze out at BBN, with $T_{\nu} = (4/11)^{1/3}T_{\gamma}$ so per $\nu\bar{\nu}$ neutrino species: $n(\nu\bar{\nu}) = (4/11)n_{\gamma}$ but: what is ρ_{ν}, Ω_{ν} ? depends on neutrino masses

★ Laboratory studies of β decay e.g., precision measurement of e^- energy in ${}^{3}\text{H} \rightarrow {}^{3}\text{He} + e^- + \bar{\nu}_e$ place limits on ν_e mass *Q*: how? current PDG limit: $\underline{m(\nu_e) < 2 \text{ eV}}$ $\overleftarrow{}$ We shall see: solar and atmospheric ν s will ultimately show all 3 species have $\underline{m(\nu) \leq few \text{ eV}}$ But you will show (PS 4): neutrino density parameter is

$$\Omega_{\nu} \simeq \frac{\sum_{i} m(\nu_{i})}{45 \text{ eV}} \tag{4}$$

Q: implications for dark matter?

Q: implications for particle physics?

Dark Matter Requires New Physics

no viable particle dark matter candidates in Standard Model of particle physics

non-baryonic DM demands physics beyond the Standard Model

Hugely important and exciting for particle physics!

Unlike dark energy: particle physics *does* offer solutions! particle candidates available "off the shelf" invented for particle physics motivations independent from DM!

- lightest supersymmetric particle
- axion
- strangelets...

19

(Almost) all of these are formed as *cold relics*