Astro 596/496 NPA Lecture 23 March 25, 2019

Announcements:

• Problem Set 4 due Friday

Last time, a long time ago:

- non-baryonic dark matter and physics *Q: what's non-baryonic dark matter?*
- Standard Model of particle physics fermionic matter, bosonic force carriers particle families *Q: how many? structure?*

 \vdash

Periodic Table of Elementary Particles

known fundamental particles: 3 families

$$\begin{pmatrix} u \\ d \\ e \\ \nu_e \end{pmatrix} \begin{pmatrix} c \\ s \\ \mu \\ \nu_\mu \end{pmatrix} \text{ charm quark } \begin{pmatrix} t \\ b \\ \tau \\ \nu_\tau \end{pmatrix} \text{ top quark bottom quark } (1)$$

+antiparticles

all spin-1/2: matter made of fermions!

for quarks and charged leptons, masses increase with each family same for ν s??

Ν

Particle Interactions: Who feels what?

all particles subject to gravity, and neutrinos ν_e, ν_μ, ν_τ "feel" only weak interaction charged leptons e, μ, τ feel only weak and EM quarks feel all forces

Note: β decay really quark transformation:

 $\begin{array}{l} n \rightarrow p + e^{-} + \bar{\nu}_{e} \\ \hline udd \rightarrow \boxed{uud} + e^{-} + \bar{\nu}_{e} \\ \text{so underlying reaction is} \\ d \rightarrow u + e^{-} + \bar{\nu}_{e} \end{array}$

The Standard Model of Particle Physics: Twitter Version

- 3 matter families of quarks and leptons
- massless neutrinos

- fundamental interactions/forces: exchange of field quanta structure set by internal symmetry
 ▷ strong: quanta are gluons
 ▷ electromagnetic: photon γ
 ▷ weak: W⁺,W⁻,Z⁰
 ▷ and gravity (graviton?)
- **Higgs field:** scalar field, couples to all particles coupling strength \rightarrow particle mass Higgs field quanta: spin-0 **Higgs boson** mass $m(H^0) = 125.18 \pm 0.16$ GeV largest known unstable: decays to everything! e.g., $H^0 \rightarrow b\bar{b}$

Non-Baryonic Dark Matter: Standard Model Candidates

Q: what Standard Model particles **could** *be non-baryonic dark matter?*

Q: hint–what Standard particles are stable?

Q: what is needed to tell if Standard Model particles are DM?

Standard Model Non-Baryonic Dark Matter

non-baryonic dark matter:

- not baryons: quarks are out
- *matter:* non-relativistic: photons are out
- stable: Higgs, W^{\pm} , Z^{0} out

Leaves leptons

Charged leptons: e, μ, τ

only e stable, charge neutrality $n_e=n_Z,\ m_e\ll m_{\rm U}$ \rightarrow $\rho_e\ll\rho_B$

neutral leptons: neutrinos! ν_e, ν_μ, ν_τ

- not baryons!
- stable!

0

- weakly interacting
- families: get "three for price of one!"

excellent non-baryonic dark matter candidate! ...and the only Standard Model non-baryonic DM candidate!

Neutrino Dark Matter

neutrinos are a guaranteed component of non-baryonic dark matter!

even better: we know the cosmic neutrino number density! recall: neutrinos freeze out at BBN, with $T_{\nu} = (4/11)^{1/3}T_{\gamma}$ so per $\nu\bar{\nu}$ neutrino species: $n(\nu\bar{\nu}) = (4/11)n_{\gamma}$ but: what is ρ_{ν}, Ω_{ν} ? depends on neutrino masses

★ Laboratory studies of β decay
 e.g., precision measurement of e⁻ energy in ³H → ³He+e⁻+ν_e
 place limits on ν_e mass Q: how?
 current PDG limit: m(ν_e) < 2 eV
 ✓ ★ We shall see: solar and atmospheric νs

will ultimately show all 3 species have $m(
u) \lesssim few \; {
m eV}$

But you will show (PS 4): neutrino density parameter is

$$\Omega_{\nu} \simeq \frac{\sum_{i} m(\nu_{i})}{45 \text{ eV}}$$
(2)

Q: implications for dark matter?

Q: implications for particle physics?

Dark Matter Requires New Physics

no viable particle dark matter candidates in Standard Model of particle physics

non-baryonic DM demands physics beyond the Standard Model

Hugely important and exciting for particle physics!

Unlike dark energy: particle physics *does* offer solutions! particle candidates available "off the shelf" invented for particle physics motivations independent from DM!

- lightest supersymmetric particle
- axion
- strangelets...

00

(Almost) all of these are formed as *cold relics*

The Early Universe: Particle Dark Matter

Particle Dark Matter: Thermal Relics Kolb & Turner, Ch. 5; Dodelson Ch. 3.4

if nonbaryonic stable particles created in Early U.

 \rightarrow dark matter today (?)

consider an exotic particle ψ which is:

- *stable* (doesn't) decay
- \bullet created in early U., along with $\bar\psi$
- can *annihilate* via $\psi \overline{\psi} \leftrightarrow X \overline{X}$

where X is some other, usually Standard Model, particle note: could be that $\psi = \overline{\psi} \rightarrow$ annihilations unavoidable!

if $\psi \bar{\psi}$ made in pairs (or $\psi = \bar{\psi}$)

 \rightarrow thermally produce $n_{\psi} = n_{\overline{\psi}}$ in early U.

⁶ if only annihilate afterwards: $n_{\psi} = n_{\overline{\psi}}$ always Q: if these are DM today, why don't they just annihilate?

Why Doesn't Dark Matter Annihilate?

If dark matter has $n_{\psi} = n_{\overline{\psi}}$ then complete annihilation $\psi \overline{\psi} \to X \overline{X}$ would indeed lead to $n_{\psi} \to 0$ today: boring!!

but annhilations occur in expanding universe DM density and velocity is dropping! eventually: DM particles "don't find each other" freezeout of annihilations

so: annihilations don't ever stop but just become rare $\rightarrow \psi$ becomes effectively stable surviving particles: relic abundance

Q: what determines annihilation freezeout epoch?
 Q: what leads to a relic abundance that's large? small?

Freezeout of Annihilations

we have already seen: *freezout* epoch (temperature T_{f}) set by *reaction rate balance with expansion rate:*

$$\Gamma(T_{\rm f}) = H(T_{\rm f}) \tag{3}$$

annihilation rate per DM particle

$$\Gamma_{\rm ann} = n_{\psi} \langle \sigma_{\rm ann} v \rangle \tag{4}$$

▷ before freezeout: DM in equilibrium $n_{\psi} = n_{\psi,eq}(T)$ ▷ after freezeout: DM set by $n_{\psi,eq}(T_{f})$

freezout condition $H = n_{\psi,eq} \langle \sigma_{ann} v \rangle$ controlled by *annihilation cross section* via $\langle \sigma_{ann} v \rangle$

Solution consider DM non-relativistic at freezeout ("cold relic") Q: what is $n_{\psi,eq}(T)$?

Cold Relics: WIMPs

cold relic: non-relativistic at freezeout so with no chemical potential (number not conserved)

$$n_{\text{eq}}(T) \sim e^{-m/T} (mT)^{3/2}$$
 (5)

Freezeout: $\Gamma_{ann} = H \text{ at } T = T_{f}$ $\Rightarrow n_{eq} \langle \sigma v \rangle_{ann} \sim \sqrt{G}T^{2}$

Q: what needed to find value of T_f ?

To solve:

need annihilation cross section

for many models, $\langle \sigma v \rangle \propto v^n$ (S-wave: n = 0) $\Rightarrow \langle \sigma v \rangle(T) = \sigma_1 c \ (T/m)^{n/2}$, where $\sigma_1 = \sigma_{E=m}$

• convenient rewrite $1/\sqrt{G} = M_{\rm Pl} \simeq 10^{19}~{\rm GeV}$

Planck Mass

set
$$\Gamma_{ann}(T_{f}) = H(T_{f})$$
, and solve for T_{f}
Find: $x_{f} = m/T_{f} \sim \ln(mM_{PI}\sigma_{1}) \Rightarrow T_{f} = m/x_{f}$
So at freezeout

$$n_{\rm f} \sim \frac{x_{\rm f}^{3/2}}{m M_{\rm Pl} \sigma_1} T_{\rm f}^3 \tag{6}$$

 \rightarrow present relic number density

$$n_{\psi,0} = n_{\psi,f} \left(\frac{a_{\rm f}}{a_0}\right)^3 = n_{\psi,f} \left(\frac{T_0}{T_{\rm f}}\right)^3 \sim \frac{x_{\rm f}^{3/2}}{mM_{\rm Pl}\sigma_1} T_0^3 \tag{7}$$

present relic mass density

$$\rho_{\psi,0} = m n_{\psi,0} \simeq \frac{x_{\rm f}^{3/2} n_{\gamma,0}}{M_{\rm Pl} \sigma_1}$$
(8)

What have we shown?
if a symmetric stable species ever created
 (annihilates but not decays)
then annihilations will freeze, and
inevitably have nonzero relic density today.

This calculation is of the highest interest to particle physicists *Q: why?*

We have calculated a relic density
 Q: To what should this be compared?

Cold Relics: Present Abundance

 $\star
ho_{\psi,0}$ indep of m_{ψ}

 $\star \rho_{\psi,0} \propto 1/\sigma_1$: the weak prevail! Q: what sort of cross section is relevant here?

★ To get "interesting" present density: $\Omega_{\psi} \sim 1 \rightarrow \rho_{\psi} \sim \rho_{crit}$ demands a specific cross section

$$\sigma_{1} = \frac{x_{\rm f}^{3/2} n_{\gamma,0}}{\Omega_{\psi} M_{\rm p} \rho_{\rm crit}}$$
(9)

$$\sim 10^{-37} \,{\rm cm}^{2} \,\left(\frac{x_{\rm f}}{10}\right)^{3/2}$$
(10)

 $\overline{\mathfrak{o}}$ scale of the Weak interaction! $[\sigma_{\mathsf{weak}}(E \sim \mathrm{GeV}) \sim 10^{-38} \mathrm{~cm^2}]$

The WIMP Miracle

Dark Matter candidate: if DM is a cold symmetric relic needed *annihilation cross section* is at Weak scale! corresponding energy: if $\sigma \sim \alpha/E^2$ then $\sigma \sim 10^{-36}$ cm² = 10 pb $\rightarrow E \sim 1$ TeV

deeper reason for DM as Weakly Interacting Massive Particle: WIMP

that weak-scale annihilations $\rightarrow \Omega_{\chi} \sim \Omega_{\text{nbdm}}$: "WIMP Miracle"

How to find them? √ What if we do? What if we don't?

Freezeout and Relic Abundance of a Symmetric Species

for *conserved* species ψ (chem. pot. $\mu_{\psi} \neq 0$) constant comoving number: $d(na^3) \stackrel{\text{cons}}{=} 0$

$$\Rightarrow \boxed{\dot{n}_{\psi} + 3\frac{\dot{a}}{a} n_{\psi}} \stackrel{\text{cons}}{=} 0$$

for non-conserved species: $d(n_{\psi}a^3) = qa^3 dt \neq 0$, where q = source/sink rate = creation/destruction rate per unit vol $\Rightarrow \dot{n}_{\psi} + 3\frac{\dot{a}}{a}n_{\psi} = q$

assume annihilation $\psi \overline{\psi} \rightarrow X \overline{X}$ product X thermal, with chem. pot. $\mu_X \ll T \Rightarrow n_X = n_{\overline{X}}$

$$q = q_{\text{net}} = q_{\text{prod}} - q_{\text{ann}} \tag{11}$$

$$= \langle \sigma v \rangle_{\text{prod}} n_X n_{\bar{X}} - \langle \sigma v \rangle_{\text{ann}} n_{\psi} n_{\bar{\psi}}$$
(12)

$$= \langle \sigma v \rangle_{\text{prod}} n_X^2 - \langle \sigma v \rangle_{\text{ann}} n_{\psi}^2$$
 (13)

19

in equilib, Q: what condition holds for q?

chem equilib: $q = 0 \Rightarrow q_{prod} = q_{ann}$ so in general

$$\dot{n}_{\psi} + 3Hn_{\psi} = q = -\langle \sigma v \rangle_{\text{ann}} \left[n_{\psi}^2 - (n_{\psi}^{\text{eq}})^2 \right]$$
(14)

and a similar expression for $ar{\psi}$

Change variables:

(1) use comoving coords: photon density n_γ ∝ T³ ∝ a⁻³, so put Y = n_ψ/n_γ to remove volume dilution then n_ψ + 3a/a n_ψ = n_γY

(2) put x = m_ψ/T ∝ a since t ∝ 1/T² ∝ x², dY/dt = dY/dx x = H x dY/dx

Then:

$$Hx\frac{dY}{dx} = -n_{\gamma}\langle \sigma v \rangle_{\text{ann}} \left(Y^2 - Y_{\text{eq}}^2\right)$$
(15)
(16)

finally

$$\frac{x}{Y_{\text{eq}}}\frac{dY}{dx} = -\frac{\Gamma_A}{H} \left[\left(\frac{Y}{Y_{\text{eq}}}\right)^2 - 1 \right]$$
(17)

where $\Gamma_A = n_{\psi}^{\rm eq} \langle \sigma v \rangle_{\rm ann}$: annihil. rate

So: change in comoving ψ controlled by (1) annihil. effectiveness Γ/H (2) deviation from equil

```
when \Gamma/H \gg 1
Q: what if Y < Y_{eq}? Y > Y_{eq}?
```

```
when \Gamma/H < 1
Q: how does Y change?
```

21

Q: how you you expect Y to evolve?

```
when \Gamma/H \gg 1, Y driven to Y_{eq}
when \Gamma/H < 1, Y change is small \rightarrow freezeout!
```

relic abundance at $T \rightarrow 0$ or $x \rightarrow \infty$ is $Y_{\infty} \simeq Y_{eq}(x_{f})$: value at freezeout

Step back: How can a symmetric species have $n_\psi = n_{\bar\psi} \neq 0 \text{ at } T \ll m?$

physically: expansion is key if H = 0, $Y_{\infty} = Y_{eq}(\infty) = 0$: \rightarrow all ψ find $\overline{\psi}$ partner, annihilate but $H \neq 0$: when U dilute enough, ψ never finds $\overline{\psi}$: i.e., $\Gamma \ll H$ nonzero relic abundance

```
hot relics: x_f \ll 1 \ (T_f \gg m)
cold relics: x_f \gg 1
```

Note: hot/cold *relics* refers to freezeout conditions But: hot/cold *dark matter* refers to structure formation criteria (namely, m vs temp T_{eq} at matter-rad equality)