Astro 596/496 NPA Lecture 27 April 3, 2019

Announcements:

- Preflight 5 due Friday
- one last respite for the weary (apologies!)
 no class meeting Friday

Last Time: began the nuclear and particle astrophysics of stars first stop: **the multimessenger Sun** *Q: hydrogen burning in the Sun: inputs and outputs? Q: first stages of pp chain?*

Н

Solar Hydrogen Burning: Big Picture

Sun: main sequence, $4p \rightarrow {}^{4}\text{He} + 2e^{+} + 2\nu_{e}$

Reaction chains usually begin with

$$p + p \rightarrow d + e^+ + \nu_e \tag{1}$$

weak reaction: slowest step in chain. Next:

$$d + p \rightarrow^{3} \text{He} + \gamma \tag{2}$$

d

p

Deuterium in the Sun

deuterium evolution in Sun:

$$\dot{n}_d = -\lambda_{dp} n_d n_p + \lambda_{pp} n_p^2 / 2 \tag{3}$$

$$= -\Gamma_{\text{per}\,d}(dp \rightarrow {}^{3}\text{He}\gamma) \left(\frac{n_{d}}{n_{d}} - n_{d}^{\text{eq}}\right)$$
(4)

self-regulating:

driven to equilibrium $\dot{n}_d = 0$ in timescale $\tau_d = 1/\Gamma_{perd} \sim 1$ s (!)

$$\left(\frac{\mathsf{D}}{\mathsf{H}}\right)_{\mathsf{eq}} = \left(\frac{n_{d,\mathsf{eq}}}{n_p}\right) = \frac{\lambda_{pp}}{2\lambda_{dp}}\Big|_{T_c} \sim 10^{-18} \tag{5}$$

why so small? ratio of Weak to EM reaction

note: $pp \rightarrow de^+\nu_e$ has proton consumption rate $\dot{n}_p|_{pp \rightarrow de\nu} = -\lambda_{pp}n_p^2 = -2\Gamma_{per\,p}n_p \quad Q: why?$

Q: what happens to ³He?

Helium-3 source: $dp \rightarrow {}^{3}\text{He}\gamma$ dominant sink: ${}^{3}\text{He} + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + p + p$

$$\dot{n}_3 = -2\lambda_{33}n_3^2/2 + \lambda_{dp}n_dn_p \tag{6}$$

approximate $n_d \approx n_d^{eq}$ again a *self-regulating equilibrium*, with

$$n_{3}^{\text{eq}} = \sqrt{\frac{\lambda_{dp}}{\lambda_{33}}} n_{d}^{\text{eq}} n_{p} = \sqrt{\frac{\lambda_{dp}}{\lambda_{p}}} n_{p}$$
(7)

so in solar core

$$\left(\frac{^{3}\text{He}}{\text{H}}\right)_{\text{eq}} \sim 10^{-5} \tag{8}$$

reached in timescale $\tau_3 \sim 10^6$ yr ...and longer at lower temp \Rightarrow large ³He gradient outward in Solar core

Q: what about ⁴He?

Helium-4

in **PP-I**, source is ³He ³He \rightarrow ⁴He p pno sink! *Q: so what is equilibrium abundance?*

time change of ⁴He:

$$\dot{n}_{4} = \lambda_{33} n_{3}^{2} / 2 \approx \frac{1}{2} \lambda_{33} (n_{3}^{\text{eq}})^{2} = \frac{\lambda_{pp}}{4} n_{p}^{2} = -\frac{1}{4} \dot{n}_{p}|_{pp \to de\nu}$$
(9)

Q: physical significance of last equality?

⁴He "ash" accumulates over time in solar core at expense of protons (H "fuel")

σ

Alternatives to *pp*-I

hydrogen burning via pp chain:

$$p + p \rightarrow d + e^+ + \nu_e \tag{10}$$

then overwhelmingly, the next step is

$$d + p \rightarrow^{3} \mathrm{He} + \gamma \tag{11}$$

then pp-I

1

$${}^{3}\text{He} + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + p + p \tag{12}$$

Q: other possible fates of 3 He? neutrino production in each?

The *pp*-II, *pp*-III Chains

$$\begin{array}{c} \mathsf{PP}\text{-I} \\ ^{3}\mathsf{He} + ^{3}\mathsf{He} \rightarrow ^{4}\mathsf{He} + p + p \\ ^{3}\mathsf{He} + ^{4}\mathsf{He} \rightarrow ^{7}\mathsf{Be} + \gamma \\ \mathsf{PP}\text{-II} \\ ^{7}\mathsf{Be} + e \rightarrow ^{7}\mathsf{Li} + \nu_{e} \\ ^{7}\mathsf{Li} + p \rightarrow ^{4}\mathsf{He} + ^{4}\mathsf{He} \\ ^{8}\mathsf{Be} \rightarrow ^{8}\mathsf{Be} + e^{+} + \nu_{e} \\ ^{8}\mathsf{Be} \rightarrow ^{4}\mathsf{He} + ^{4}\mathsf{He} \end{array}$$

minor additions to energy and neutrino generation:

pep 3-body reaction: $ppe^- \rightarrow d\nu_e$ *hep* weak reaction: ³He $p \rightarrow$ ⁴He $e^+ \nu_e$

PP-II and PP-III chains: different ³He *fate* ⁷Be branching is key:

e capture rate $\sim 1000 \times \ p$ capture rate

- $^{\circ}$ ⁷Be: 15% of ν production
 - ⁸B: ~ 0.02% of ν production

Q

The CNO Cycle

consider reactions on *pre-existing* C, N, O

$$\begin{array}{c} 12_{C} & \underbrace{(p,\gamma)}{13}_{N} & \underbrace{e^{+}\nu_{e}}{13}_{C} \\ (p,\alpha)\uparrow & & \downarrow (p,\gamma) \\ 15_{N} & \underbrace{e^{+}\nu_{e}}{15}_{O} & \underbrace{(p,\gamma)}{14}_{N} \end{array}$$

follow one trip around cycle:

Q: net input of particles? net output? net change of CNO?

CNO act as $4p \rightarrow {}^{4}He \ catalyst!$

Coulomb barriers high (Z = 6, 7, 8): need high T_c to go

 \Rightarrow CNO cycle minor in Sun (CNO $\rightarrow 1.6\% L_{\odot}$)

but main H-burner for $M \gtrsim 1.5 M_{\odot}$

CNO Cycle

Standard Solar Neutrino Production

Rxn	$E_{\nu,\max} = Q$	$\langle E_{\nu} \rangle$	$\Phi_{\nu} (10^{10} \ \nu \ \text{cm}^{-2} \ \text{s}^{-1})$
$pp { ightarrow} de oldsymbol{ u}$	0.420 MeV	0.265 MeV	6.0
⁷ Be $e \rightarrow$ ⁷ Li ν	lines: ${}^{7}Li^{gs} = 0.861$	MeV; $^{7}Li^{*} = 0.383$ MeV	0.47
$^{8}B \rightarrow ^{8}Be \ e \ \nu$	17.98 MeV	9.63 MeV	$5.8 imes10^{-4}$

Total CCNA Flux

Q: Why are the ⁷Be neutrinos monoenergetic?

www: Bahcall neutrino spectrum

pp neutrinos largest flux, but low energies ⁷Be neutrinos monoenergetic, strong $\sim T_c^8$ dependence ⁸B neutrinos continuum, ultrastrong $\sim T_c^{20}$ dep

 $\stackrel{i_{\sim}}{\sim}$ What should this mean for production vs radius? www: Bahcall fig of production vs R

Standard Solar Model Predictions

What are key SSM ν ingredients, predictions?

- which (anti)neutrinos produced?
- time variations: at source? in detectors?
- L_{\odot} fixes what?
- what connection between $\Phi_{\nu}(^{7}Be)$ and $\Phi_{\nu}(^{8}B)$?
- ν spectra: determined by what?

SSM Predictions

SSM Key Predictions:

- at source: steady ν_e flux from Sun
- elliptical Earth orbit \rightarrow annual flux variation $\Delta \Phi_{\nu} / \Phi_{\nu} \simeq 2\delta r_{\oplus} / r_{\oplus} \sim 4e_{\oplus} \sim 7\%$
- pp flux \sim fixed by L_{\odot}
- ⁷Be, ⁸B flux *T*-dep, but $\Phi_{\nu}(^{7}\text{Be}) > \Phi_{\nu}(^{8}\text{B})$
- neutrino spectra fixed by β decay indep of solar model (since $T_{c,\odot} \sim 1 {\rm keV} \ll {\rm Q}_{\rm nuke}$)

14

Q: how to test these predictions?

Solar Neutrino Experiments

Original motivation (Davis, Bahcall):

- confirm nuke energy generation
- measure $T_{\odot,c}$

Facts of life:

1. $\nu \rightarrow \text{small } \sigma$: mean free path $\ell_{\nu} \gg R_{\odot}$ so detector size $\ll \ell_{\nu}$: detector is optically thin

2. $E_{\nu} \lesssim few \text{ MeV} \rightarrow \text{large natural background}$

e.g., radioactivity, cosmic ray muons

Q: what is needed for neutrino observatory?

Neutrino Observatories: Design Requirements

1. Large detector. optically thin \rightarrow volume matters, not area ν -nucleus absorption $\sigma_{\nu A} \sim 10^{-44} \text{ cm}^2$ \Rightarrow event rate per target $\Gamma_{\nu}(A) = \Phi_{\nu}\sigma_{\nu A} \sim 10^{-36} \text{ s}^{-1}$ Solar Neutrino Unit: 1 SNU = 10^{-36} event s⁻¹ target⁻¹ Want net rate $R = N_{\text{targ}}\Gamma \gtrsim 1 \text{ day}^{-1} \sim 10^{-5} \text{ s}^{-1}$ \Rightarrow Need $N_{\text{targ}} = R/\Gamma \sim 10^{31}$

$$M_{\text{targ}} = Am_u N_{\text{targ}} \sim 10^9 \left(\frac{A}{50}\right) \text{ g } \sim \left(\frac{A}{50}\right) \text{ kiloton}$$

big!

2. Go underground.

් "Clean" lab, low-background material

Radiochemical Experiments: Chlorine

Homestake Mine Ray Davis Jr. et al 1967-1995 site: gold mine(!) in Lead, SD, USA www: Homestake+Davis target: chlorine (cleaning fluid!, 0.61 kton) process: ${}^{37}\text{Cl} + \nu_e \rightarrow {}^{37}\text{Ar} + e$ (endothermic) threshold: ν must supply |Q| = 0.814 MeV \Rightarrow only measure ${}^{7}\text{Be}$, ${}^{8}\text{B} \nu$ s procedure: cycle fluid \rightarrow filter, collect ${}^{37}\text{Ar}$ atoms: $\sim few$ /week!

Measure:

$$\Gamma_{\rm obs} = 2.56 \pm 0.16 \pm 0.16 \text{ SNU}$$
 (13)

Compare to SSM prediction:

$$\frac{\Gamma_{obs}}{\Gamma_{SSM}} = 0.33 \pm 0.03 \pm 0.05 \ll 1!$$
(14)

 $\begin{array}{l} \stackrel{\scriptstyle \leftarrow}{\scriptstyle \neg} & \text{Only see} \sim 1/3 \text{ of predicted flux!} \\ \Rightarrow \text{original } \textit{Solar neutrino problem} \end{array}$

Radiochemical Experiments: Gallium

• GALLEX: Gran Sasso, Italy (1990's) • SAGE: Baksan, Russia (1990's) target: (liquid) gallium metal process: 71 Ga + $\nu \rightarrow {}^{71}$ Ge + ethreshold |Q| = 0.233 MeV \rightarrow some $pp \ \nu$ s contribute! calibrated with mega-Curie source!

Measure:

$$\Gamma_{\mathsf{SAGE}} = 75 \pm 7 \pm 3 \; \mathsf{SNU} \tag{15}$$

$$\Gamma_{\text{GALLEX}} = 78 \pm 6 \pm 5 \text{ SNU} \tag{16}$$

Compare:

$$\frac{\Gamma_{\rm obs}}{\Gamma_{\rm SSM}} = 0.59 \pm 0.06 \pm 0.04$$
(17)

[™] Significant deficit! *Solar neutrino problem #2* Note: no info on neutrino energy spectrum

Water Čerenkov Experiments

target: water process: electron scattering $\nu e \rightarrow \nu e$ for $E_{\nu} \gtrsim 0.5$ MeV, recoil electron $v_e \sim c$

but in water, refractive index $n = 1.34 \Rightarrow v_e > c/n$ emit "sonic boom" photons: Čerenkov radiation "optical shock wave," cone of light cone opening angle depends on $v_e \rightarrow E_e$

www: Super-K events

Q: advantages of water Čerenkov vs radiochemical?

In praise of Water Čerenkov

- detect neutrinos in "real time"
- $E_e \rightarrow \nu$ energy \rightarrow spectrum
- cone orientation $\rightarrow \nu$ direction info!

Super-Kamiokande. Kamioka Mine, Japan: 1996www: Super-K image direction: ν s point back to Sun (check) www: Neutrino image of the Sun $e\nu$ elastic scattering in pure water Energy threshold: 5 MeV \Rightarrow see only ⁸B ν s spectrum: shape matches SSM ...but $\Phi(^{8}B)_{SK}/\Phi(^{8}B)_{SSM} \sim 50\%$! Solar neutrino problem #3

Sudbury Neutrino Observatory (SNO)

SNO Art McDonald et al: 1999-present site: mine in Sudbury, Ontario, Canada ultrapure heavy water: D_2O

Reactions:

 $\nu_e + d \rightarrow e^- + p + p$ Charged current: ν_e only Threshold: 1.4 MeV \rightarrow ⁸B only

 $\nu_x + d \rightarrow \nu'_x + p + n$ ν' flavor = ν flavor **Neutral current**: *all flavors* Threshold: 2.2 MeV \rightarrow ⁸B only

^{Σ} also: Salt phase – dissolve NaCl in SNO tank big σ for ${}^{35}Cl(n,\gamma){}^{36}Cl \rightarrow$ improved NC

SNO Results

Charged-current flux: ν_e only

$$\Phi_{\rm CC}^{\rm SNO} = \left[1.59^{+0.08}_{-0.07}(\text{stat})^{+0.06}_{-0.08}(\text{sys})\right] \times 10^6 \ \nu \ \text{cm}^{-2} \ \text{s}^{-1} \quad (18)$$

Neutral-current flux: all ν species

$$\Phi_{\rm NC}^{\rm SNO} = [5.21 \pm 0.27 (\rm stat) \pm 0.38 (\rm sys)] \times 10^6 \ \nu \ \rm cm^{-2} \ \rm s^{-1} \ (19)$$

Thus we have

$$\frac{\Phi_{CC}^{SNO}}{\Phi_{NC}^{SNO}} = \frac{\nu_e \text{ flux}}{\text{all } \nu \text{ flux}} = 0.306 \pm 0.026(\text{stat}) \pm 0.024(\text{sys}) \quad (20)$$

Which means...

Implications: New Neutrino Physics!

The Sun makes only ν_e *Q: why? e.g., why not* ν_{μ} ? \rightarrow if no new ν physics, only ν_e at Earth \rightarrow predict $\Phi_{CC}(\nu_e) = \Phi_{NC}(\nu_x)$

SNO measures $\Phi_{CC}(\nu_e) > \Phi_{NC}(\nu_x)!$ with *very* high confidence! non- ν_e flux arriving in detector!

A big deal:

- demands new neutrino physics
- indep. of detailed solar model