Astro 596/496 NPA Lecture 30 April 12, 2019

Announcements:

• Problem Set 5 due

Typo alert! Q3(f) should refer to KamLAND paper Fig 3

Preflight 6 due next Friday

Last Time: neutrino oscillations

- neutrinos born in Sun, created via Weak interaction definite flavor: ν_e eigenstate
- propagate as mass eigenstate
- measured in Weak interactions: flavor eigenstates
- mixing controlled by mass square difference $\Delta m^2 = m_2^2 m_1^2$ and by (vacuum) mixing angle θ_V

Solar Neutrino Solutions

Using all solar ν data, most favored solution:

Implications

N

• "large mixing angle" (LMA)

Q: what angle gives maximal vacuum mixing? ...hint:

$$\begin{pmatrix} \nu_e \\ \nu_x \end{pmatrix} = \begin{pmatrix} \cos\theta_{\mathsf{V}} & \sin\theta_{\mathsf{V}} \\ -\sin\theta_{\mathsf{V}} & \cos\theta_{\mathsf{V}} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$

• $\Delta m^2 = |m_2^2 - m_1^2|$ does *not* give either m_1 or m_2 but does set *minimum* mass for either: $m_{\nu,\min} = \sqrt{\Delta m^2} = 8 \times 10^{-3} \text{ eV}$

Q: how to test this solution in the lab?

Laboratory test: KamLAND

(Kamiokande Liquid Scintillator Anti-Neutrino Detector) sources: anti-neutrinos from Japanese nuke reactors

- $E_{\nu} = 2.6 8 \text{ MeV}$
- \bullet avg distance $R\sim 180~{\rm km}$
- \rightarrow if LMA, disappearance probability is

$$P_{\rm dis} = \sin^2 2\theta_{\rm V} \, \sin^2 \left(2\pi \frac{R}{350 \rm km} \right) \tag{1}$$

Kamland observes flux reduction: $P_{dis} = 0.66$ E_{ν} spectrum $\rightarrow \Delta m^2 = 7.9^{+0.6}_{-0.5} \times 10^{-5} \text{ eV}^2$ \rightarrow confirms oscillations in general, and LMA in particular! www: KamLAND plots

ω

Q: remaining questions? experiments?

Next Step: Precision Neutrino Astronomy

- measure monoenergetic ⁷Be neutrinos now detected in real-time! flux consistent with MSW LMA www: Borexino
- measure pp flux to $\sim 1\% \Rightarrow$ better θ_V www: Stanford Lab New questions:

What are ν masses?

oscillations only measure splittings Δm^2 \rightarrow know masses are *different* and *nonzero* but don't even know hierarchy: is $m_1 < m_2$ or the reverse?

Is ν_i identical to $\bar{\nu}_i$?

yes: "Majorana" neutrinos no: "Dirac" neutrinos, right-hand ν exist can test with "neutrinoless double beta decay" (rare nuclear decays, only go if Majorana)

Do neutrinos violate CP?

if so: maybe important in baryogenesis...

"leptogenesis" scenario: generate net *lepton* number, then translate this to net baryon number

Massive Stars

Neutrinos and Nucleosynthesis

Evolution of Massive Stars

in our context, massive: $M \gtrsim 8 - 10 M_{\odot}$ that is: destined to become core-collapse supernovae

Massive Star Demographics

based on initial mass function-distribution of star birth masses

- massive stars are $\sim 0.5\%$ by *number* of all stars born
- but comprise ~ 10% of mass going into stars
 Q: how can these both be true?

Massive star evolution: Main sequence:

- O and B types: $T_{\rm eff} \sim 10^4 10^5$ K, luminosity $L \sim (10^3 10^5) L_{\odot}$ Q: implications?
- MS central conditions $(\rho_c, T_c) \sim (100 \text{ g/cm}^3, 3 \times 10^7 \text{K})$ Q: compare to center of Sun? implications?

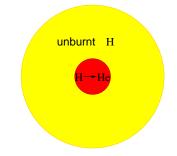
Massive Stars: Main Sequence Implications

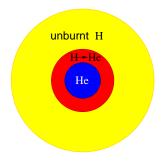
hot photosphere: $T_{eff} \sim 10^4 - 10^5$ K

- OB main sequence stars are blue/UV
- important sources of ionizing photons (H ii regions)

huge luminosity $L \sim (10^3 - 10^5) L_{\odot}$

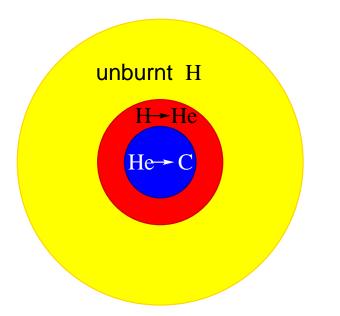
- overrepresented in observed (flux-limited) star counts
- huge nuclear burning rates...
- ...and so *short main sequence lifetime* (\lesssim 30 Myr)
- short life: don't travel far from birth sites *massive stars trace ongoing star formation*
- rapidly die, eject new nucleosynthesis products to cosmos


Massive Stars: Burning Phases


Main sequence: hydrogen burning

- $T_c \gtrsim 2 \times$ hotter than Sun
- burn $p \rightarrow {}^{4}$ He via CNO cycle avoid Weak $pp \rightarrow de\nu$: goes much faster

when core hydrogen exhausted:


- central fuel source gone \rightarrow center cools hydrostatic equilibrium lost \rightarrow *star contracts*
- unburned H in shell around core ignited shell H burning begins
- outer layers expand \rightarrow red supergiant
- \bullet core contracts and heats \rightarrow ignite...

9

Q: what is main nuclear reaction in core?

- **He burning** via $3\alpha \rightarrow {}^{12}C$
- a 3-body reaction

Q: how might this work?

10

The Triple-Alpha Reaction

 $3\alpha \rightarrow {}^{12}C$ in two steps:

11

(1) $\alpha + \alpha \leftrightarrow {}^{8}$ Be establishes (small) 8 Be *equilibrium* $2\mu_{\alpha} = \mu_{8}$ $\Rightarrow n_{8}^{eq} \sim n_{\alpha}^{2}/(mT)^{3/2}e^{-Q/T}$ $Q = 0.092 \text{ MeV} \sim 10^{9} \text{ K} \Rightarrow \text{small abundance!}$

(2) ⁸Be +
$$\alpha \rightarrow {}^{12}C + \gamma$$

rate $\simeq \langle \sigma v \rangle n_{\alpha} n_8^{eq} \sim \langle \sigma v \rangle n_{\alpha}^3 / (mT)^{3/2} e^{-Q/T}$

but: He \rightarrow C burning too slow if cross section small not enough carbon made if astrophysical S(E) constant *Q*: and so? He \rightarrow C burning too slow if S(E) is constant Fred Hoyle: reaction must pass through resonance ⁸Be + α lied just at excited state of ¹²C

```
Hoyle predicted existence of state,
soon confirmed by nuke experiment!
www: {}^{12}C energy level scheme
\rightarrow early example of cosmos as poor woman's accelerator
```

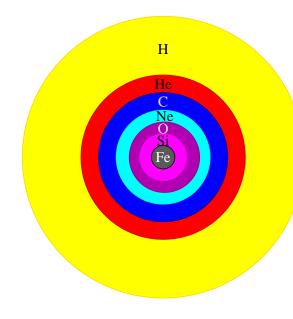
```
Along with <sup>12</sup>C production, also

<sup>16</sup>O production via <sup>12</sup>C(\alpha, \gamma)<sup>16</sup>O

Initially: 3\alpha \rightarrow {}^{12}C dominates

Then: <sup>12</sup>C source \propto n_{\alpha}^{3} low \rightarrow {}^{16}O made
```

key rate: ${}^{12}C(\alpha,\gamma){}^{16}O$


- sets ejected $^{12}C/^{16}O$ ratio
- $\stackrel{\rightleftarrows}{\triangleright}$ \bullet determines later stellar evolution
 - uncertain (but getting better!)

When He exhausted, begin cycles:

- contract
- ignite new shell burning
- \bullet ignite ash \rightarrow fuel in core
- burn core to exhaustion repeat...

develop "onion skin" structure: www: pre-SN favors " α -elements" : tightly bound

C burning:	$^{12}C + ^{12}C$	\rightarrow	20 Ne + α
Ne burning:	²⁰ Ne + γ	\rightarrow	$^{16}O + \alpha$
	20 Ne + α	\rightarrow	$^{24}Mg + \gamma$
	24 Mg + α	\rightarrow	28 Si + γ
O burning:	$^{16}O + ^{16}O$	\rightarrow	$^{28}Si + \alpha$
		\rightarrow	$^{32}S + \gamma$

13

Neutrino Cooling

At $T \gtrsim 5 \times 10^8$ K (C burn): neutrinos produced via $e^+e^- \rightarrow \nu\bar{\nu}$ much slower than $e^+e^- \rightarrow \gamma\gamma$ yet still crucial *Q: why?*

neutrino production rate per volume:

$$q_{\nu} = \langle \sigma v n_e^2 \rangle \sim T^2 \times (T^3)^2 \sim T^8$$
(2)

 ν escape \rightarrow dominate *E* loss: **neutrino cooling**

neutrino *E* loss rate per vol: $\varepsilon_{\nu} = E_{\nu}q \sim T^9$ equilibrium: $\varepsilon_{\text{emit},\nu} = \varepsilon_{\text{released,nuc}}$ $\rightarrow L_{\nu} \sim (1 - 10^6)L_{\gamma}$ for C thru Si burning: **neutrino star!** shortens burning phases final stages: months, days

Si Burning

 $T \sim 4 \times 10^9 \text{ K} \rightarrow n_{\gamma} \sim T^3 \text{ large}$ photodisintegration ${}^{28}\text{Si} + \gamma \rightarrow p, n, \alpha$ rate $\lambda_{\gamma} \propto e^{-Q/T}$, Q = BE of p, n, α in nucleus 1. γ s take p, n, α from weakly bound nuclei 2. these recombine with all nuclei 3. flow \rightarrow more tightly bound

Net effect: redistribute nucleons to most tightly bound

Nuclear Statistical Equilibrium

core driven to nuclear statistical equilibrium (NSE) for $N_i n + Z_i p \leftrightarrow A_i$ chemical equilibrium $N_i \mu_n + Z_i \mu_p = \mu_i$

$$Y_{i} = \frac{n_{i}}{n_{B}} \sim \left[\left(\frac{\rho}{(mT)^{3/2}} \right)^{1 - 1/A_{i}} Y_{n}^{N_{i}/A_{i}} Y_{p}^{Z_{i}/A_{i}} e^{+B_{i}/A_{i}T} \right]^{A_{i}}$$
(3)

with B_i/A_i =binding energy per nucleon max abundance \rightarrow max Y_i should be \sim largest B_i/A_i Q: namely? NSE parameters: T, ρ, Y_n, Y_p but Y_n, Y_p related via charge conservation ("neutron excess"):

 $\eta = \frac{\sum_{i} (N_i - Z_i) n_i}{\sum_{i} (N_i + Z_i) n_i} = \sum (N_i - Z_i) Y_i = 1 - 2Y_e$

where $Y_e = n_e/n_{\text{baryon}} \in (0, 1)$ is the "electron fraction"

After H burn \rightarrow ⁴He: $\eta \simeq 0$ If no β decays later, η unchanged At $\eta = 0$, NSE max not at ⁵⁶Fe but at *double magic* $N_i = Z_i = 28$: ⁵⁶Ni ...but ⁵⁶Ni unstable outside SN core! then decays \rightarrow crucial for light curve!

end with "*iron core*" $\stackrel{\checkmark}{\neg} M_{\text{core}} \sim 1.4 M_{\odot} = M_{\text{Chandra}}$ max BE: fusion no longer exoergic!

Core Collapse

```
Why collapse?
```

```
can't burn Fe \rightarrow degenerate core
support: thermal, e degeneracy pressure-core is iron white
dwarf!
but do burn Si in overlying shell
\rightarrow increase Fe core mass
when M_{\text{core}} > M_{\text{Chandra}} \rightarrow \text{collapse}
```

```
upon collapse: Fe core photodisintegrated
e.g., {}^{56}Fe\rightarrow13\alpha + 4n
electron capture e^- + p \rightarrow n + \nu_e
and e^- + Z_A \rightarrow Z - 1_A + \nu_e
"neutronization" or "deleptonization"
removes e and so reduces degeneracy pressure
• accelerates collapse (positive feedback)
```

• also: releases ν_e

Collapse Dynamics

Freefall timescale for material with density ρ (PS6):

$$au_{
m ff} \sim rac{1}{\sqrt{G
ho}} \sim 446 \, \, {
m s} \sqrt{rac{1 \, \, {
m g/cm^3}}{
ho_{
m cgs}}} \lesssim 1 \, \, {
m sec}$$

but pre-supernova star very non-uniform density *Q: what does this mean for collapse?*

inner core: homologous collapse $v \propto r$ outer core: quicly becomes supersonic $v > c_s$ outer envelope: unaware of collapse

Bounce and Explosion

core collapses until $\rho_{core} > \rho_{nuc} \sim 3 \times 10^{14} \text{ g/cm}^3$ repulsive sort-range nuclear force dominates: *"incompressible"* details depend on equation of state of nuke matter

1. core bounce \rightarrow proto neutron star born

- 2. shock wave launched
- 3. a miracle occurs
- 4. outer layers *accelerated Demo: AstroBlaster*[™]
- 5. successful explosion observed

 $ightarrow v_{
m ei} \sim 15,000 \ {
m km/s} \sim c/20!$

Why step 3? What's the miracle? "prompt shock" fails: do launch shock, but • overlying layers infalling \rightarrow ram pressure $P = \rho v_{in}^2$ • dissociate Fe \rightarrow lose energy shock motion stalls \rightarrow "accretion shock" "prompt explosion" mechanism fails

Q: what needed to revive explosion?

Delayed Explosion Mechanisms

"delayed explosion" to revive: neutrinos, 3-D hydro/instability, rotation effects? some models not work, but controversial

Energetics:

 $E_{\rm ejecta} \sim M_{\rm ej} v^2 \sim (10 M_\odot) (c/20)^2 \sim 10^{51} {\rm ~erg} \equiv 1$ foe but must relase grav binding

$$\Delta E \sim -GM_{\star}^2/R_{\star} - (-GM_{\rm NS}^2/R_{\rm NS})$$

$$\simeq GM_{\rm NS}^2/R_{\rm NS} \sim 3 \times 10^{53} \text{ erg} = 300 \text{ foe}$$

Q: Where does the rest go?

 \Rightarrow SN calculations must be good to $\sim 1\%$

³ to see the minor optical fireworks

22