Astro 596/496 NPA Lecture 35 April 24, 2019

Announcements:

- Problem Set 6 due Friday penultimate! Q1 typos: use Table 3 and Fig 13 of Bouchet+ (1991) Q3b typo: you should find $(T_1/T_2)_{ad} \gg (T_1/T_2)_{obs}$
- Office Hours after class today, or by appointment
- Physics Colloquium today: David Spergel, Princeton & Flatiron "Repurposing a Spy Telescope for Studying Dark Energy and Exoplanets"

Last time: unveiling the engines of gamma-ray bursts

- long bursts Q: engine? how do we know?
- short bursts *Q*: engine?

Н

• GW/GRB 170817: a landmark in multimessenger astronomy

• *Q*: what did the gravitational radiation tell us? gamma rays? other EM?

Kilonova/Macronova

theory predictions for binary neutron star merger outcome merger matter sorted by angular momentum

- central object: lowest angular momentum matter
 black hole, or
 hypermassive neutron star
- magnetized, spinning \rightarrow relativistic magnetized jet
- accretion disk: drives hot, low-density polar wind of expanding neutron star matter: expected EM signal!
- dynamically ejected matter: $v \sim 0.10 0.3c$ expanding neutron star matter: expected EM signal!

key question: What happens to decompressing neutron star matter?

N

Beyond the Iron Peak

www: Solar Abundances vs A

if all heavy elements made only in burning to nuclear statistical equilibrium then should follow Fe peak, fall dramatically at high A \rightarrow would have much less of the very heavy elements

How to synthesize nuclei above the iron peak?

- Coulomb barrier $E_{\rm C} = Z_1 Z_2 e^2 / r$ prohibitive
- fusion reaction not exothermic

Yet silver, gold, lead, uranium, ... all exist! \rightarrow nature has found a way

4

Q: Suggestions?

Neutron Pathways to Nucleosynthesis

Solution: neutrons

- no Coulomb barrier
- capture reactions occur even at small thermal speeds

www: Solar Abundances vs N

- abundance peaks at neutron magic numbers, and just below
- so: production favors nuclei with neutrons in closed shells
- strong abundance drop *just above* closed shells

Today: nuclear physics of n capture processes

 $_{\sigma}$ Then: astrophysical sites for appropriate conditions

Neutron Capture Processes

nuclear physics of n capture understood in 60+ years ago! summarized in B²FH (1957) and Cameron (1957)

Simplifying assumptions for first approximation:

- (1) "let there be neutrons"
- (2) a pre-existing "seed" nucleus is presnt (e.g., 56 Fe)
- (3) can ignore charged particle reactions (Coulomb suppressed)
- (3) (n, γ) reactions (radiative capture) dominate (n, p) and (n, α) all increase neutron richness, but the latter moreso

Q: (n, γ) reaction on chart?
Q: if bombard seeds with neutrons, what can happen?
Q: competing processes? regimes?

www: chart of nuclides

σ

Neutron capture physics set by **competition**

- neutron capture $n + (A, Z) \rightarrow (A + 1, Z) + \gamma$
- β decay $(A,Z) \rightarrow (A,Z+1) + e^- + \overline{\nu}_e$

Two regimes (BBFH 1957; Cameron 1957): capture rate \gg decay rate \Rightarrow rapid capture: *r*-process decay rate \gg capture rate \Rightarrow slow capture: *s*-process

Detective story:

- do these limiting cases occur? (Yes!)
- what are astrophysical sites?

 \neg

n Capture Rates

n-capture cross sections: typically, $\sigma_{(n,\gamma)} \propto 1/v$

- enhanced at low energies!
- $\sigma v = \langle \sigma v \rangle = const \rightarrow T$ -indep!
- for nuclei with "magic" N: closed neutron shells tightly bound \rightarrow small $\sigma_{(n,\gamma)}$

Implications if neutron capture is slow?

 \odot

The s-Process: Basic Physics

slow *n* capture: $\Gamma_{n\gamma} \ll \Gamma_{\beta}$ \Rightarrow path in chart of nuclides

• follow *n*-rich edge of β -stability

Q

• one *s*-process species per *A* (i.e., per isobar) with exception of long-lived radioactive "branch points"

s-Process Abundance Evoltion

for isobar \boldsymbol{A}

$$\frac{dn_A}{dt} = -\langle \sigma v \rangle_A n_n n_A + \langle \sigma v \rangle_{A-1} n_n n_{A-1}$$
(1)

except for seed (e.g., $^{56}\mathrm{Fe})$

$$dn_{\text{seed}}/dt = -\langle \sigma v \rangle_A n_n n_{\text{seed}}$$
 (2)

Q: what behavior expected for n_A ?

10

put neutron exposure: $d\tau = n_n(t) v_T dt$ $\tau =$ time-integrated n flux = n "fluence" where $v_T = \sqrt{2kT/\mu_n}$, $\mu_n = m_n m_A/(m_n + m_A)$. Then

$$\frac{dn_A}{d\tau} = -\sigma_A n_A + \sigma_{A-1} n_{A-1} \tag{3}$$

where $\sigma_A = \langle \sigma v \rangle_A / v_T$: thermal n capture cross section

evolution is another example of *self-regulating* equation \rightarrow expect abundance driven to equilibrium, $dn_A/dt = 0$ $\Rightarrow \sigma_A n_A = \sigma_{A-1} n_{A-1}$

$$\frac{n_A}{n_{A-1}} = \frac{\sigma_{A-1}}{\sigma_A} \tag{4}$$

 \Rightarrow the "local approximation"

 \exists only holds for non-magic nuclei \Rightarrow good between magic numbers

Solar Abundances and the s-Process

For elements beyond Fe peak: plot $N_A\sigma_A$ vs A if s-process reaches equilibrium, predict flat curve www: $N_A\sigma_A$ plot

for adjacent nuclides, local approximation excellent between magic N: good but globally, fails \Rightarrow need distribution of τ

Roughly: exponential distribution of τ needed i.e., imagine series of n bursts of different intensities *Q: how does nature do this?*

12

The s-Process: Characteristic Scales

typically, $\langle \sigma v \rangle \sim 3 \times 10^{-17} \ {\rm cm}^3/{\rm s}$ capture timescale $\tau(n) = 1/(n_n \langle \sigma v \rangle)$ if $\tau(n) > \tau_{\beta}^{\min} \sim 10$ yr shortest lifetime on s path $\Rightarrow n_n < 10^8$ neutrons cm⁻³

Ag but also must pass through N = 61: no stable nuclei! 106 but $_{61}$ ¹⁰⁷Pd: $\tau_{107} \sim 10^7$ yr N=61

106

107

108

Ag

109

108

Pd

Q: how do we save the s-process?

13

s-Process Branches and Neutron Density

must pass through 107 Pd before decay: $\tau(n) < \tau_{107} \rightarrow \Rightarrow n_n > 10^2$ neutrons cm⁻³

14

compare with typcial neutron densities in nuclear reactors: $n_n \sim 10^7 \text{ cm}^{-3}$

Q: Guesses as to astrophysical site?

s-Process: Astrophysical Site

Intermediate mass stars: $\sim 3-8~M_{\odot}$ recall—after main seq:

- 1. H shell burn \rightarrow RGB
- 2. He ignition \rightarrow core He burn

3 He shell burn \rightarrow asymptotically approach RGB again "asymptotic giant branch" = AGB

On AGB: two burning shells: H, He instability \rightarrow thermal pulses (TP)

TP-AGB stars observed to have

- C/O > 1 "carbon stars"
- high *s*-process! "S-stars"

s-Process: The Crown Jewel

technetium seen in AGB stars (Merrill 1952)

www: Tc lines

no stable isotopes!

longest-lived τ (⁹⁸Tc) = 6 Myr

- \Rightarrow 1st direct evidence for ongoing nucleosynthesis in stars!
- \Rightarrow *s*-process must occur in AGB!

s-process occurs in pulsing AGB stars

Q: where did the stars get the neutrons? the seeds?

AGB neutron sources:

- ¹³C from CNO cycle: ${}^{13}C(\alpha, n){}^{16}O$
- ¹⁴N from CNO cycle burnt to ¹⁴N(α,γ)¹⁸F(β)¹⁸O(α,γ)²²Ne then ²²Ne(α,n)²⁵Mg

occurs in intershell region

- \boldsymbol{n} created during, between pulses
- \Rightarrow repeated n exposure of different intensities
- \Rightarrow can fit observed exposure distribution
- ...but now can make detailed, realistic models
- in context of stellar evolution