Astro 596/496 NPA Lecture 36 April 26, 2019

Announcements:

- Problem Set 6 due today ... or Monday Q1 typos: use Table 3 and Fig 13 of Bouchet+ (1991) Q3b typo: you should find $(T_1/T_2)_{ad} \gg (T_1/T_2)_{obs}$
- last Astro colloquium Tuesday, 3:45pm, NCSA Charles Gammie, "First EHT Results"

Yesterday: LIGO detected a second binary neutron star merger!

- \bullet distance $\sim 150~{\rm Mpc}$
- no gamma-ray burst seen by *Fermi* or *Swift*
- EM searches ongoing

н

Last time: nucleosynthesis beyond the iron peak

Q: what's the magic ingredient? why is it needed?

Q: main competing reactions?

Q: limiting cases?

Q: s-process path on chart of nuclides?

nucleosynthesis via neutron captures

- no Coulomb barrier
- capture reactions occur even at small thermal speeds

Neutron capture physics set by **competition**

- neutron capture $n + (A, Z) \rightarrow (A + 1, Z) + \gamma$
- β decay $(A,Z) \rightarrow (A,Z+1) + e^- + \overline{\nu}_e$

Two regimes (BBFH 1957; Cameron 1957): capture rate \gg decay rate \Rightarrow rapid capture: *r*-process decay rate \gg capture rate \Rightarrow slow capture: *s*-process

The s-Process: Basic Physics

slow *n* capture: $\Gamma_{n\gamma} \ll \Gamma_{\beta}$ \Rightarrow path in chart of nuclides

* www: chart of nuclides--neutron capture cross sections $\sigma_{n,\gamma}$ small at closed n shell/magic NQ: why? implications for abundances?

Magic Numbers and s-process Peaks

 $\sigma_{n,\gamma}$ small at closed n shell/magic N tightly bound/highly stable, resistant to add another n

but this means *capture rate*

 $\Gamma_{n,\gamma} = n_n \langle \sigma_{n,\gamma} v \rangle$

is small at magic neutron numbers

thus:

СЛ

- n capture "flow" slows at magic N
- \bullet abundances of magic N nuclides accumulate
- \bullet expect peaks in solar pattern at magic N

```
www: solar abundances vs A and vs N
```

observed! these are the *s*-process peaks!

The s-Process: Astrophysical Site

Site: AGB stars two burning shells: H, He instability \rightarrow thermal pulses (TP)

"S-stars" – high s-process! contain technetium!

Q: where did the stars get the neutrons? the seeds?

AGB neutron sources:

- ¹³C from CNO cycle: ¹³C (α, n) ¹⁶O
- ¹⁴N from CNO cycle burnt to ¹⁴N(α, γ)¹⁸F(β)¹⁸O(α, γ)²²Ne then ²²Ne(α, n)²⁵Mg

```
occurs in intershell region
between p \rightarrow {}^{4}He and {}^{4}He\rightarrow {}^{12}C zones
n created during, between pulses
\Rightarrow repeated n exposure of different intensities
\Rightarrow can fit observed exposure distribution
...but now can make detailed, realistic models
in context of stellar evolution
```

s-Process Residuals: Solar Abundances

for isotopes above Fe peak *s*-process distribution well-determined accounts for \sim 50% of isotopes above the iron peak!

what's left? look at residual (leftover) solar abundances:

$$N_r(A,Z) = N_{\text{obs}}(A,Z) - \frac{f(A)}{\sigma_A}$$
(1)

where f(A) set by s-theory curve

www: r-process abundances

 $^{\infty}$ Q: what patterns do you notice?

The r-Process: Solar Abundances

solar *r*-process patter from *s*-process residuals:

- *r*-process peaks at $A \sim 80, 130, 195$
- appear *below s*-process peaks:

```
A_{s,\max} - A_{r,\max} \sim 10
Why?
```

```
Also: s-process terminates at <sup>208</sup>Pb:

A > 208 are \beta-unstable

\Rightarrow ^{232}Th, <sup>235</sup>U, and <sup>238</sup>U are r-process only

demand something else: r-process
```

The *r*-Process

Same song, second verse:

- let there be a **lot** of neutrons
- and pre-existing heavy element seed(s)
- capture n rapidly, without time for β decay

Q: how will this proceed?

Q: what limits how far up the chart we can go?

www: chart of nuclides

The *r*-Process: Basic Physics

- Rapidly add n to seeds (e.g., ⁵⁶Fe)
- populate *n*-rich nuclei far from β -stability
- n enrichment finally limited by (γ, n) reactions and ultimately by *neutron drip*: extremely n-rich nuclei that decay via n emission
- process stops when all neutrons captured or reach to actinides (U, Th, Pu) and fission

Q: what happens after neutron blast is over?

r-Process: Decays Back to Stability

after blast: return to stability via repeated β decays

12

Combining r and s Processes

In general, heavy nuclei can have both *r*-process and *s*-process contributions.

shielded *s*-only nuclei very useful in spararting *r* and *s* processes

r-process: after neutron exposure

The *r*-Process: In More Detail

- 1. Increase A at fixed Z reach $(n, \gamma) \leftrightarrow (\gamma, n)$ equilibrium Saha: $n_{Z,A+1}/n_{Z,A} \sim n_n (mT)^{-3/2} e^{S_n(Z,A+1)/T}$ with n separation energy www: chart of nuclides $S_n(Z, A + 1) = m(Z, A + 1) - m(Z, A) - m_n$ • distribution in A fixed by n_n , T
- peak A_{\max} when $n_{Z,A+1} \simeq n_{Z,A}$ for *r*-process conditions, occurs at $S_n \sim 2$ MeV
- "waiting point" till A_{max} can β -decay
- 2. Increase Z at fixed A Put $n_Z = \sum_A n_{Z,A}$ $dn_Z/dt \simeq -\lambda_{\beta,Z} n_Z + \lambda_{\beta,Z+1} n_{Z+1}$ in equilibrium, $dn_Z/dt = 0$:

14

$$n_{Z+1}/n_Z = \lambda_{\beta,Z}/\lambda_{\beta,Z+1} = \tau_{\beta,Z+1}/\tau_{\beta,Z}$$
(2)

Result:

During *r*-process: populate nuclides far from stability $(S_n \sim 2 \text{ MeV})$

Pileups around long $\tau_{\beta} \Rightarrow$ magic N

www: r-process path

After *r*-process: β decay to stability Magic $N \rightarrow$ nonmagic, lower A: *r*-peaks lie below *s*-peaks

Characteristic Scales for the r-Process

Timescale

must overcome neutron-magic β -bottleneck $\Rightarrow t \sim \tau_{max} \sim 1$ s

Temperature

need $T \sim$ neutron sep. energy $\sim MeV \Rightarrow T \gtrsim 10^9 \text{ K}$

Free Neutron Density

need $\tau_{n\gamma} < \tau_{\beta}$ for each of ~ 100 *r*-process path nuclides: $t/100 \gtrsim \tau_{n\gamma} \sim n_n \sigma v_T \Rightarrow n_n \gtrsim 10^{20} \text{ cm}^{-3}$

Neutron-to-Seed Ratio

start from seeds with $A \sim 56 - 80$ to make actinides (e.g., ²³⁸U) \Rightarrow neutron/seed ~ 100

16

Q: so where might these conditions occur?

Candidate Astrophysical Sites for the r-Process

Core Collapse Supernovae

old ideas: outer layers of NS (near mass cut)? helium-burning shell: n from $\neq 22(\alpha, n)^{25}$ Mg seeds are pre-existing ⁵⁶Fe

new ideas:

- in hot propto-NS, $\nu {\rm s}$ drive baryonic ''wind'' near mass cut rich in $n,~\alpha$
 - "high-entropy bubble" high n/seed \rightarrow can get r-process
- in *collapsar*, accretion disk also drives ν wind which could produce n and r-process
- ejected in GRB and/or accompanying Type Ic explosion?
 if true: r-process origin in long/soft GRB

Neutron Star – Neutron Star Mergers

neutrons are abundant! it's right there in the name!

if neutron star matter ejected: cold NS matter expands, heats \rightarrow *r*-process

mergers rarer than SN: need larger *r*-production per event

if true: *r*-process origin in short/hard GRB

New Twist: r-Process in Halo Stars

CS 22982-052

- halo star, [Fe/H] = -3.1
- \Rightarrow expected to sample few (1?) nuke events no *s*-process sources yet *Q*: *why*?
- Although "metal" poor, very rich in *r*-process:

$$\left(\frac{\mathsf{Eu}}{\mathsf{Fe}}\right)_{\star} = \frac{50}{50} \left(\frac{\mathsf{Eu}}{\mathsf{Fe}}\right)_{\odot} \tag{3}$$

"heavy r" (≥Ba) in solar ratios to each other
 e.g., (Eu/Pb)_{*} = (Eu/Pb)_⊙
 and (Pb/Ir)_{*} = (Pb/Ir)_⊙, etc. ...
 www: abundance pattern

19

Q: what do these results imply?

r-Process Universality?

r-process-enriched halo stars:

same r-process ratios as in solar system

"one size fits all" ?! amazing!

- this star: a few, maybe ONE nuke event
- the Sun: many (1000?) events, averaged ...but *r*-process ratios are the same!
- \Rightarrow Universal *r*-process?
- "light r" (Ge–Zr) anomalous
 i.e., non-solar

20

r-Rich Halo Stars: Implications

1. supersolar *r*/Fe:

not all SN produce both *r*-pro and Fe *r*-site very short-lived

- heavy-r in solar ratios:
 universal (heavy) r-process site
- 3. nonsolar light-*r* ratios: multiple production mechanisms?

Crown Jewels: Uranium and Thorium

U and Th:

- *r*-process only
- unstable:

$$\tau(Th) = \tau(^{232}Th) = 20.2 \text{ Gyr}$$

 $\tau(U) = \tau(^{238}U) = 6.446 \text{ Gyr}$

Thorium found in many halo stars Uranium found in several halo stars

22

Possible fly in ointment:

most r-ratios in solar pattern

but: heaviest stable elements (Os, Ir, Pb) not

 \Rightarrow universal *r*-process only approximate?