Basic Formulas you need to know for Exam 1. They will not be given to you:
SD and Short-cut SD formulas
$\mathrm{Z}=\frac{\text { Value }- \text { Avg }}{\mathrm{SD}}$
Probability Rules- multiplication and addition rules (including special cases of "at least one" and "not all")

EV and SE for sums, averages and percents for n draws from a box (p. 14 of Study Guide)
$\mathrm{Z}=\frac{\text { Value }-\mathrm{EV}}{\mathrm{SE}}$
Confidence Intervals using Z and t curves
Significance tests: 1 sample Z and t tests.
$\mathrm{Z}=\frac{\mathrm{Obs}-\operatorname{Exp}}{\mathrm{SE}} \quad \mathrm{t}=\frac{\mathrm{Obs}-\operatorname{Exp}}{\mathrm{SE}^{+}}$where
$\mathrm{SE}^{+}=\frac{\mathrm{SD}^{+}}{\sqrt{\mathrm{n}}}$ or you can use $\frac{\mathrm{SD}}{\sqrt{\mathrm{n}-1}}$ if you prefer, they're the same thing. $\quad \mathrm{SD}^{+}=\sqrt{\frac{\mathrm{n}}{\mathrm{n}-1}} \times \mathrm{SD}$
Significance tests: 2 sample Z and t tests.
$\mathrm{Z}=\frac{\text { Obs difference }- \text { Exp difference }}{\mathrm{SE}_{\text {difference }}} \quad \mathrm{t}=\frac{\text { Obs difference }- \text { Exp difference }}{\mathrm{SE}_{\text {difference }}^{+}}$where
$\mathrm{SE}_{\text {difference }}=\sqrt{\mathrm{SE}_{\mathrm{A}}^{2}+\mathrm{SE}_{\mathrm{B}}^{2}}$ and $\mathrm{SE}_{\text {difference }}^{+}=\sqrt{\mathrm{SE}_{\mathrm{A}}^{+2}+\mathrm{SE}_{\mathrm{B}}^{+2}}$

Degrees of freedom for t tests
1 sample t test: $\mathrm{n}-1$,
2 sample t -test: $\mathrm{n}-1$ where n is the sample size of the smaller sample

